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Complex Numbers

INTRODUCTION

Complex numbers are an extengion of the real numbers degigned to solve equations
that have no solutions within the realm of real numbers, The history of mathematics
shows that man has been developing and enlarging his concept of number according
to the saying that “Necessity is the mother of invention”. In the remote past they started
with the set of comnting numbers and invented, by stages, the negative numbers,
rational numbers, irrational numbers etc. Since square of a positive as well as negative
number 18 a posifive number, the square root of a negative number does not exist in the
realm of real numbers. Therefiore, square roots of negative numbers were given no
attention for centuries together, However, recently, propertics of numbers involving
square roots of negative numbers have also been disctissed in detail and such numbers
have been found useful and have been applied in many branches of pure, applied,
financial and computational mathematics.

1.1 Complex Numbers
The numbers of the form z=a +ib ,where a,be R and i=\f—_1, are called complex

nambers. For example, 3 + 4}, ,?.—%i. —T7-2i ete. are complex mumbers and the set of
all complex numbers is denoted by C.

1.1.1 Recognition ol Real and Imaginary Parts
Let us start with considering the following equation:

2 +1 =ﬂ = r’=-1 = x=:|:\{—_l :
v/—1 does ot belong to the set of real numbers. We, m:I:rliﬂl 0 88 il;,lim.wy

therefore, for convenience call it imaginary number | part.

and denote ithy i (read as iota).

In the complex rumber z=a+ib, 4 is called real part and b is called Imaginary part

of the complex number, For convenient, real part is denoted by Re z and imaginary part

by Im z of a complex number z. For example, if z= 3 + 44, then
Rez=3andImz=4.

The product of a non-zero real number and 7 is also an imaginary number.

For example, 2;:‘,—31‘,4'5:',—1—21:'51'3 all imaginary numbers.




<> a1
Conjugate of Complex Numbers: Let z = a+ibbe a complex number, then a — ib is
called the complex conjugate of @ + ib. It is denoted by z . Thus 5 — 4 is complex
conjugate of 5 + 4j and -2 —3; iz complex
conjugste of -2+ 3i I A real rumber io self-conjugate. |
1.1.2 Operations on Complex Nambers
With a view to develop algebra of complex naumbers, we state a few definitions.
The symhols a, &, ¢, d, k, where used, represent real numbers.
(i) Addition: (a+ib)+{c+id)=(a+c)+ib+d)
(i) Kk(a+ib)=ka+ikb
(iii) Subtraction: (@+ib)—(c+id) = (a+ib)+[{c+id)] _
=a+ib+{(—e—id) ={a—e)+-i(db—d)
(iv) Multiplication: (g + ibMc + id ) =ac + iad + ibe + *bd = (ac — bd) + i(ad + bc)
1.1.3 Compiex Numbers as Ordered Pairey’of Real Numbers
We can define complex numbers also by using ordered pairs.
Let C be the set of ardered pairs belonging to B x R which are subject to the
following properties:
® @b)=(c,d)ea=cab=d
(i) (a,b)+{c,d)=(t+cb+d)
@i1) (a, b)¢, d) = (ac— bd,ad+ be)
(iv) Ifkis any real number, then k(a,b)= (ka,&5)
Then C is called the set of complex nombers. It is casy to sec that
{a,b)—(c,d)=(a—c,b-d)
Properties (i), (ii) and (iii) respectively define equality, sum and product of two
complex numbers. Property (iv) defines the product of a real number and a complex
number,
[ZFUTAM 1| Find the sum, difference and product of the complex numbers (8, 9) and
(3.-6)
[RTIT Sum = (8+ 5,9 - 6) =(13,3)
Difference = (8 —5,9— (- 6)) =(3, 15)
Product = (8-5 -%-6), 8(—6) + 9-5)
= (40 + 54, —48 +45) = (94, -3)
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1.1.4 I‘mpertiea of the Fundamental Operations on Complex Numbers
It can be easily verified that the set C satisfies all the field axioms i.¢., it possesses the

propexties of real numbers,

By way of explanation of soms points we observe as follows:

(i) The additive identity in s (0, 0).

(ii) Evety complex number (a, b) has the additive inverse (—a, ) i.e.,

(@ )+ (= —-5)=(0,0)
{iii) The mmltiplicative identity is (1, 0) i.e.,
(g B¥(1,0)=(e1-50,b1+al)=(a, b)
=(1,0)(s b)
(iv) Every non-zero complex number {ie., mumber
not equal to (0,0)} has a multiplicative inverse.
The multiplicative inverse of (a, b) is

(#aw)
a+8 d +b

—b

The set C of complex
numbess does nipt satisfy the
order exioms,’ In fisct, there
mmmﬁlsaymgmatum
complex mumber is greater

| or less than the other. )

(@ B) (a’+b” ; b’) {1, 0), the identity element

()

(\") (as b) [((.‘, d) i _(ﬂ,f) ] = (ﬂ, b][t.‘; ) i (ﬂ, b)(esf )

[T 2] IF 2 =(4, 2) and 2, =(3,~1), then find -,
2

BRI Given zl—(d- 2), z,=(3,-1)
{4,2) 442

Now, -1
% (3-1) 3-i

Multiply the-:mmamtur and denominator by the complex canjugate of z, =3-1.

Z _4+2 4+2: 3+i

Zy  J=i 313+:

_ () (XD + DB+ (2D 12+ 48 +6i+ 2%°
- @GP -G T 9-p
124106 -2 104104 . i§
= = =1+i i‘==1
9-(-1) 10

Thus, 2 =1+
zZ,
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1.1.5 Argand Diagram

Every complex number 13 represented by one and only one point of the coordinate plane and

every point of the plane represents one and only one complex mumber. The components of
the complex number are be the coordinates of the point

i
representing it. In this representation the x-axis is called ¥
the real axis and the y-axis is called the imaginary axis, B(_sz"' 40,2
The coordinate plane itself is called the complex plane * "2r L
or z — plane, The figure representing one or more 14
complex numbers on the complex plene is called an f-t—;—!—ho—l—H—!—H
Argand diagram. The Argand dingmm is @ way of . o
representing one or more complex mumbers on the q_;_z.]_z-- v
complex plane. Points on the x-axis represent real -
T e Temein e/l yexly e “jy Fgn

In an Argand diagram, the complex mumber x+iy isuniquely represented by the order
pair (x, ). In Figure (i), the complex numbers 3 +2{, -2+ 2i, 3 —2iand 2 — 2i
correspond to the order pairs (3, 2), (-2, 2), (_—?, ~2) and (2, —2) respectively have been
represented geometrically by the point A, 8, Cand D. o
Modulns of a Complex Number: The feal number . Axy)
¥ + 7 is called the modulus of the complex mumber é‘”‘

. . iy
x-+iy and it is denoted by |z+1]. In Figure (i), |oa| = ;
represents the modulus of z+ iy . In othet words, the o = M
modubus of a complex tumber is the distance firom the

ExampicEl} S0 “”‘)

then evaluate [z| vy  TiguredD

- (1+2i) _1+divds?  34di 240 —6-3i+8i+di’
2-i 2-i 2—i  2+i i
_ —6+5i-4 _—10+5i
T 4-(-) 5
= z=-—2+i

Soluton




it LT <s> ——
and  |g|=|-2—- i|—1/(—2) +(-1)" =a+1

= [7=+5
P EXERCISE 1.1 _d

1. Find the multiplicative inverse of each of the following complex numbers:
O €47 @ 25 (i) (1,0)

2. Separate into real and imaginary parts (write as s simple complex gdmber):
N 2-Ti o (=243 4 Co (4430
O s ® 5 @) 720 5

3. Provethat 7=z iffz is real, Q'

4. For ze €, show that:

§)) z;z Rﬂ(z) (ii) ?:1@(¥)',’ (iif) Mz:z.;

zl 3
£y
6. Iz=2+Tiand z,=-5+ m.]h_m evatumethefﬂlluwing:

O Ra—dz @ Pa+Z @ [T5+25 @) (@)
7.  Show that: "1+ P 3+ P H4 =0 forallne N.

5. Mz=2+i2=3-2z=1+3 lhenexprm in the form of a+ib.

8. F-mdmelmt_pm&i{mameofn,if(:;] =1
9. Show thil.t,ﬂm valug of  for n € Nand n > 4 is i, where r is the remainder when
n is diviged by 4.
1.2 Egquality of Two Complex Numbers
The two complex mumbers z, =a+ 5 and z, =c+df are said to be equal iff their real
and imaginary parts are equal i.e.,, a+bi =c+di<>a=candb=4d.
[T 4] I (3+ 28)(x+#)=5+12i , where x, ye R, then find the values of x and y.
LU Giventhat (3+2)(x+&) =5+12¢
=  3x+3iy2ix+ 2%y =5+12i
= (Qr—2)+@x+3)i=5+12




Ix—2y=S5 (i
2 +3y=12 (ii)
Multiply equation (i) by 3 and equation (ii) by 2, we have
9x—&y=15
4x+ 6y =24
Add the equations
Ix—6Gy+4x+6y=15+24
13x =39
x=3
Substitute x =3 in equation (i), we have
3(3)—2y=5
9-2y=5
=2y =—4
yp=2
Thusx=3,y=2
1.2.1 Square Root of a Complex Number
The square root of a complex mumber is another complex number that, when squared,
pives the original complex mimber.
Let w= p+igis a square root of & complex number z=x+iy, where p,g,x;yeR,
then w=+/z ...(3), taking square on both sides, we get
w =z
(p+ig) =x+1y
P+ipgi~x+iy
Equating real and imaginary parts, wa have
x=p-q (ii)

y=2pq (i)
Wekow thit (72 + £ = (oA~ F + 4P
Substitute x = p® —g*, y =2pq in the sbove equation, we get
(P +@y=x+y
= rPrg= \}x"+y1 (iv)
From equations (i) and (iv), we have x=p* —g*and p*+¢* ={x*+3* . Solving for
the values p and g, we have

N 2
2 2
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From equation (iii): y=2pg, we have

o« y>0,if pand g have the same sign
» y<0,ifpand ¢ have opposite signs
s y=0,ifp=00rg=0
Therefore, the square root of the complex number z=x+ iy is given by

Jz= x+iy=:|:[,|’£x2+y:+"‘ ﬁ Nty —x J
' 2 y 2

or Vz= i[,}"” ﬁ fzl—= ] (), Where |z =f¥* + y? >0 s modulus of z

Equation (v} is the required formmla for square root of the complex mumber x + i

Find the square root of complex
number 5 + 12§ and also represent the square

oot on an Argand diagram.
ETTION, Let x+ 38 =5+12
= x=S5Sandy=12>0

2| =|5+124|= 57 +122=13, <
Applymg the square root formula for complex =41
numbers, we get At 27

%
V¥ 1z - i[,/ms e _5) L
=+{f9 +i4 )=£(3 +2i)

Thus,thesqugrb:botufﬂmmmplexnmbers+ 12i are 3 +2{ and —3 — 21 ax shown

in above figure. |
- P EXERCISE 1.2 _{

1. Find the real values of x and y in each of the following:
Q) x+ip+2-A=i5-D(3+4)

(i) (x+wx1—a=(2—31)(—s+5tx—%y

&~y

ifa

3+2i
0

e B e ol
|

_® L_4
(i 2+1+3 —i 3
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2. If z=-13+24i and z,=x+ )i, find the real values of x and y such that
z, —z, ==27 +15i
3. Find the real values of x and y ift

@ (x+p) =25+60i (i) (x+ip) =64+48& (i) (x+iy) = 2;:’

4. If z=2+3i and 2z, =1—a, find the real value of ez such that Imn(z,z,)="7.
Ifz, =x+yiand z, =a+ bi, findx, y, 2 and b such that z, +z, = 10+ 4i and
z, =% =612,

6. Showthat ¥z,2,eC,z 2z =% 7,
Find the square root of the following complex numbeny-, | l
i) 7-24 @iy 8—6 () -15-36f - (iv) 119+ 1204

8. Find the square root of 13— 20:/3i and represgnt ¥om an Argand diagram.

9. Find the real values of x and y if (—7+i)(p€if+(=1-5)=i(11-i)

10. Find the real values of x and y if (5—20Kx i)+ 3=i(11—i)—4i

: . WS INY-3
11, Find the real values ofu and v if — — =
2% 2-j

12. If z,=4+5i and z, =a -2}, Fodl the real values of @ such that Re(z,z,) =20.
1.3 Complex Polynomials as a Product of Linear Factors
A complex pnlynomnlﬂ‘(z)ls a polynomial fimction of the complex variable z with
complex coefficients. It is expressed in the general form Bs:

P(zy=az" +a, z"" +..+az+a,

4

where a,,4,,...,G;,2, are complex mumbers (a,+0), and 720 is an integer
repmsenungths degree of the polynomial.

For examples B(z)=(1—-z + 3i, BE) =0 -4 + 2 + Hz + 3 - 4)and
B(z)=(2—-0)z’+22%+(5+3i) are the examples of linear, quadratic and cubic
complex polynomials respectively. If » = @, then P(z) becomes a constant polynomial.
A fundamental property of complex polynomials is that they can always be factored
into & product of linear factors.

According to the Fundamental theorem of algebra, a polynomial of degree 21 has
exactly # roots in complex number system C.,
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Awmﬂlrymthmﬂlmmsmtmﬂmtmypnlynomlﬂl’(z)nfdsgmeucanbefachned
completely into a constant ¢ and »n linear factor over C in the form
PZy=a(z—zXz—z)..(z—2) (1)
where z,, 2,,..., 2, ar¢ complex roots of the polynomial esuation P(z)= 0. Once we know
the roots of a polynomial equation F(z) = 0 we can apply equation (1) to factored the
polynomial P(z) into » linear factors. Specifically, if z and z, are roots of the
polynomial equation Fiz) = 0, then the equation must be P{z)={(z—zXz-z,). For
examples, the polynomial P(x)=x"+4 consists of real cocfficient has no real roots, so
it cannot be factored into linear polynomials with real coefficients, However, if we
considered the polynomial P(z)=z*+4 as a complex polynomial, we can easily be
factored into two linear factors as:
22 +4=(z+2)(z—24)
where 2i and —2i are the complex roots of 22 +4=0
HP[z)mapol;munnﬂﬁmﬂnn,thavﬂumnfzﬂntnhsfyP(z} Dmmﬂud.ﬂnm]

ufﬁeﬁmump(zjmdmuufmmmmymﬂmp@ 0,

Factorize the polynomial P(z) =22+ (i — 3)z— 3i.
P(z}=z“+ i—-3kz—-3

=2 +zi—3z-3i

=zz+ 1) -3z +i)

=(z+i}z—-3)
Factorize the polynomial P(z)=2*—4iz+ 12,
EIITEI, P(z) =2 —4iz+12

= —diz—(-12)

=7 —4iz—i*12 v P=—l

=22 —6lz+ 22— £12

=2(z— 6i) + 2i(z —6i)

={z— 6}z +2i)
Factorize the polynomial P(z)=2 + (1 +£)* + iz.
EITTIN, P@) =2 +(1 +i) 2 +i

=z +({1+z+i]

=z +z+iz+i]

=z{zz + 1) +iz +1)]

=zl{z + 1)z + ]

=p(z+ 1)z +i)
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polynomial squation with integer coefficiants. According to rational root thecrem:
If & polynomisl P(x)=a.x" +a_x"' +..+ax+a, has mizper coefficients, then every rational
mt%"{inﬂ:nﬁmplgtm}iuﬁhﬁu:
. ()  pisafeciorof the constant tam &, () g is 8 factor of the leading coefficient a,.
Factorize the polynomial P(z)=2" — 322+ z + 5.
Aomrdingmmﬁonalmntthmremthspossiblcmotoﬂhcngaﬁoumtl
and 5, On checking, we see that z=—1 is the root of P(2) = 0 becanse
PD)=(-1P - 3(-1F +(-1)+5=0.
So z+ 1 is a factor of the P(z). Using synthetic division
=111 3 1 5§
=1 #=5
1 4 5 0
Therefore, 2°—32% +z+5=(z+1)(2* - 4z+5) @)
Next find the factors of 22 —4z+ Susing quadratic formula
Z2—4z+5=0, here a=1,b=—4,c=5
L (D JAP-40X5)_ 4+16-20 _4+JA 4+
2

2(1) 2 2

&

= z=2%i _
The quadratic factors of 2% ~ 4 z+5=(z—(2+i))(z—(2—1)) =(z—2-i)( z - 2+i)
Substituting in equation (i), we have the
2 -3z + 24+ 5=(z+1)(z—2-i)(z—2+i)

1.3.1 Sclution of Quadratic Equation by Completing the Square

As we learned in previous classes, completing the square is a powerful and systematic
method for solving quadmtic equations. This technique involves rewriting a quadratic
equation in the form ax 2+ bx + ¢ = 0 into a perfect square trinomial, which can then be
solved by taking the square root of both gides, This method is especially valuable when
the quadratic equation does not factor eagily. By completing the square, we can solve
any quadratic equation, even those with irrational er complex roots, making it 2 more
effective technique in algebra.

Solve the equation 222 — 12z + 50 = 0 by completing square method and
hence express it a8 a product of its linear factors.




22122+ 50 =0

Dividing both sides by 2
2A-6z+25=0
= 2-2(3)z=-25
Add 3% on both sides
2-2Nz+3P=—25+3
z—37 =-16
= z-3=1J-16
= e=3x4i

Therefore, z=23+4ior 2=3—4iare the required complex roets. .

Using the corollary of Fundamental theorem of Algebra the emmupncanbe factorized
using the roots 3 + 4i and 3 — 4 as: Al

22— 122+ 50 =2(2 — 6z + 25)=2(z—(3+4)))(z—(3—4))=2(z—3—4)(z— 3+ 4)

Hence, 27° —12z+50=2(z—3—4i)(z—3+4i)

F EXERCISE 1.3
I. Factorize the following: ¥ o
@ & +45 () 9*+168F ~ (i) 3x*+37 (iv) 144x% + 2250
(W) z2-2&—1  (vi) 2+62+13 (vii) 2+42+5 (vii)) 22*-222+65
2. Factonize the following polynomials into itz linear factors:
@ 2+8 () 2+27 (i) 2-22+16-32 (iv) z'+2122-100
(V) 2#—16 (i) Z*432F-4 (vii) 2*+522+6 (vii)) 2* — 327 3969
3. Find the roots of g%+ 72— 144 =0 and hence express it as a produot of lincar
factors.
4. Solve the follpWwing complex quadratic equations by completing square method;
(i) 22°-3z+4=0 (i) z*-6z+30=0 (i) 32" -18z+50=0
(iv) 2 +4z+13=0 (v) 22°+6z+49=0 (vi} 32"-5z+7=0
5. Solve the following equations:
0 22*-32=0 (i) 327243z =0 (i) 52°-5z=10
(iv) 2-52+z—5=0 (v) 4z*'-257-21=0 (vi) 22+z"+z+1=0
6. Find a polynomial P(z) of degree 3 with zeros 3, —2i, 2i and satislying F{1) =20.
7. Find a polynomial P(z) of degree 4 with zeros 2i, —24, 1, —1, and satisfying
P(2)=240.
8. Find a polynomial P(z) of degree 4 with zeros 4, —4, 1+, 1 — 7 and satisfying
P(2)=72.




1.4 Thme Cube Roots of Umty (Note

Let x be a cube root of unity We o that e Srcbans o
. { are called imeginary aswmbern. So
x =(1)3
= =1 _1+J5‘md'1_'&mum
= £-1=10 e %
=  @E-D@E+x+1) =0 ety aiuehaimy,
Either x-1=0= x=1
ar L+x+1=0
_ —1+41-4
2
Thus, the three cube roots of unity are:

L —1+2.J§: and —1—.2\!5:

1.4.1 Properties of Cube Roots of Unity
(i) Each complex cube root of unity is square of the other

o L < e S Y
2 2
and if _I_Z\Ei = m,'thm'ﬁ= @" [ is read as omega]

(ii) The sum of all the three cube roots of unity is zero ie., 1+ @+ @*=0
(iii) The product of all the three cube roots of unity is unity ie., l-a-a*=a’=1,
as a consequence of which, each imaginary cube root of unity is the reciprocal
1

cfﬂ:lecﬂaer,thatis,m=iz,mz=—.
o »

14.2 Four Fourth Roots of Unity
Let x be a fourth root of unity

1
x = (I)* =5 =1 = F1=0 = F-DEF+1D)=0
= 2-1=0 = 2£=1= x=%1
and X*+1=0 =2*=-1=3x=1i.
Hence four fourth roots of unmity are: 1, -1, #,—i.
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1.4.3 Properties of four Fourth Roots of Unity
We have found that the four fourth roots of unity are: 1,1, +4, -1
(i) Sum of all the four fourth roots of unity is zero
1+ +i+(H=0
(ii) The real fourth roots of unity are additive inverses of each other.
1 and -1 are the real fourth rocts of unity and 1 + (-1)=0=(-1)+ 1
(ili) Both the imaginary fourth roots of ity are conjugate of each other.
{and —i mjmagmaqrfomthrmtsufumty,whmhmubmuslymmugam
of each other.
(iv) Product of all the fourth roots of unity is —1 i.e., lx(—l)xm(—;j—-l
[ETETTI] Prove thati(P +3) = G )6t @dlx +ah)
Proof: RHS =(x+y)x+ay)x+ary)

=(x + )P +(@+ o’x + Y]
=(x+ P -xp+)) =2 +y¥=LHS, { & =1, @+ =-1}
Hence proved.
Vv EXERCISE i1 4

1. Find the three cube roots of

o B (ii) -8 (i) —27 {iv) &4 (v) -125
2. Find the four fourth roots of 16 Bl 6235. Also show that their sum i8 zero in each

CRse. (
3. If1, @ & arc the cubs repts of unity, show that 1+@"+@°"= 3where n is &

multiple of 3 respecuvely. '
4, FEvahate;

@ [ “"'_]7 [ “2""_3} @) (1+vBY +1-V3Y

5. Show thab(T~ @+ &f)(1 — o+ &')Y1 — " + &)1 - &' + @) ... to 2 factors =22

6. Prove thm(”‘q [ :_J:-L
L 2 )

7. Evaluate Ew“ , where o i3 an imagimary cube root of unity.

a+bo’ +ew

a® +ba+c
24 5" 4 co?

aw'® +b® +co®®

8. If wisenimaginary cube roots of unity, prove that

9. If @is a cube root of unity, prove that




Polar coordinates are often more convenient than
Cartegian coordinates in situations involving
circular or rotational symmetry, or when a ]
problem depends ondistance from a fxed
point and angle relative to a reference direction.
Just as the Cartesian coordinate system uses an
ordered pair (x, y) to describe the position of a
point, the polar coordinate system determines the
position of a point vsing a directed distance r from o
a fixed origin O (called the pole) and an %T
angle & that the line connecting the ongin to the
point makes with the polar axis (typically aligned
with the pogitive x-axis).

180°g+

In polar coordinate system the location of a peint'P can be described by polar

coordinates in the form (r, &), where # and & are real numbers.

¥4 Rectangylar coondinsts 4 Folar coordinate

o

3
oy

o

Polaraxis

While 7 is typically congidered non-negative (r 2 0), #t is also possible forrto be

negative (r < 0). The value of r changes depending on

its sign, and this affects the position of the point in the ’
plane.

When r> 0, the angle # is the measure of any angle in
standard position whose terminal side lies along the

line connecting the origin to the point 2, measured
from the polar axis (positive x-axis).

For example, the polar coordinates (5,%} represent a

™

|58

s.3)

pointSEnits!wn}'fmmpoleatmnngl:uf% radians.

Polar aoxis




Whmr'-‘-ﬂ the angle fis the measure of any
angle in standard positicn whose terminal side lies

along the line connecting the origin to the peint O, o
but the point (2 is located |r| units in the opposite f\ﬁ!
direction (i.e., @ + z) from the polar axis (positive 2 114 >
x-axis). For example, the polar coordinates B=0

(—5,5] represents a point S units away from the

pole, but in the direction of = +:r-5—"radlans Q(—s, %)

BT 5, 4) 600 (5, 54) roprescnthe sam point n theplane |
1.4.1 The Polar Form of a Complex Number
Consider the adjoining disgram representingthe .. ¥4
complex pumber z=x+iy . From the diagram, < 8 49
we see that x=pcosfandy=rsingd , where 35 .
( & y=rgind
r=|z| is modulus and @ is called an argument
of z. - Olx=rcosl M X
Hence  x+iy=rcos@+irsinf (i)
where r=|z/=4/x* +5* and @=tan'
X
Equation (i) is called the polar form of the v
complex nmumber z.
Express the complex number 1+4+/3 in polar form,
. Stép—-1: Putrcosf=1 andrsin =3
Step — I: :'-‘=(1)’+(\,"§]z
= P=1+3-4
= r=2

il

fx=0,y>0 then 6 =9%0°
Ifx=0, <0 then B=-90°
fx=0, =0 then 6 is undafined.
Ify=0,5>0then 0=0°

_1"!_ -1 a
e - Yh V3= 60 If y=0,x<0 then 0= 180"

Thus 1+:'J?T=2c.us60°+:25i1160°

Principal Argument: The principal argument 8 of a complex number z = a + bi is
the angle between the positive real axis and the line joining (a, 5) to the origin
in the Argand plane.
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Argz=ﬂ=tm‘l[2] {a=0)

a

It iz denoted by drg. It is a single, specific value of the argument, typically chosen

within a standard range: Arg z € (—=x;, x].

1.3.3 Operations on Complex Numbers in Polar Form

Addition and Subtraction of Complex number in Polar form

Let z, =r(coaf, +ising, ) and z, =r(cos8, +isind, ) be two complex numbers in

polar form. The addition and subtraction of these numbers can be computed simply as
2 +z, =7 {0088, +ising, )+, (cosl, +ising, )

and z—z, =r(coss, +ising, ) r,(cosh, +ising,)

Multiplication of Complex number in Polar form

Let z =#(cosé +sinf ) and z, =r,(cosd, +isind, ) be two complex number in

polar form. The product of these numbers can be derived by multiplying them directly

and simplifying

z-z, = r{cos 8 +isin 6, }- 1, (cos 8, +isin6,)

2,2, =11, (0086, cosf, -+i cost) sing, +i¥ing, cosd, +i* sind, sind, )

z,- 2, =1, r; [ (086, coed, —sin, sind, )+ i( cosf sind, +sind, cosh, )] -+ i =—1L

22, =55 cos(8, +Hz)+isin(_§1+ﬂg)] (Using trigonometric identities)
Thus, multiplying two complex numbers in polar form involves multiplying their
moduli and summing their afgnments i.e., arg(z- 2,) = arg(z )+ arg(z;)

Fmdtheprothctnfs(msﬁﬂmﬁ) - 4( %mm%].

T_.|=tz1 [l:.us +igin )undzz 4ms£+:5m3#]
6 6 2 2

Here, r, =5and 81=E, while 7, = 4and 9,=%

Substitute this value in the product formula
z,-2, =1i-r'-z[005(91 +8, )+ isin(8, +92):|

7 3z AT 3= Sx . Sm
=5x4 —=— Wi +— || = = =
® I:oos(ﬁ 2) :sm[ﬁ ) ﬂ 20{003 3 +igin 3)

Thus, the required product is m[msfmin{)
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Division of Complex Number in Polar Form
Let z, =1 (cosé, +isiné,) and z,=r,(cos8, +isiné,) be two complex numbers in

polar form. The fornmula for division of these numbers in polar form can be derived as
below:

z _ ri(cﬂs91+isinﬂl)
z, r,(cosd, +ising,)
z _ #{cosd +ising,) (cosd, —ising,) [Mnltiplyanddividcﬂ:eR_H.SJ

z, nr(cosh,+ising,) (cosd), —ising,) by conjugateof cos 8, +isind,

z _ 1, (038, cos8, + sind, sin#, ) + i(sind), cosd, —cosd, siné, )

zZ B cos” 0, +8in’@, _

=1 [cos(6, ~6,)+1sin(6,~6,)] (Using trigonometric identities)
Z 2

Thus, the modulus of the division of two complex numbers equals the quotient of
their moduli, while the arguments of the quotient is the difference between their
arguments.

Thus, when dividing two complex numbers, the modulus of the result is the ratio of
their moduli, and the argument of the result 1s the difference between their arguments

ie., mx(?} =arg(z)—arg(z;)

2

Divide ;E(m-'*‘{ﬂ-m%) by ;(m[_g]ﬂ-m(_%}].
Let zl_':% [mﬂ%r +isin%] and z, =§[ms(—:)+isin[—’%]]

2 7
=?91=%,5=§aﬂﬂﬂz=—5-
Substitute value in the quotient formula

Z_4 o

—L = -8, &, -0
- irz[::::c:as(ﬂl ,)+isin(6,-6,) ]

2

Here, 7
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If 2= + iy, then write the equation [3z—i|=|3z+7] in terms of x and y.
Given Bz—i|=z+7 (@

3z—i|=[30c+9) —i| = Bx+i@y -1)| =y Gx)* + By-1)?

32 +7|=Ba+3ip + 7|=[3x—3ip+ 7| = Bx+ T+i(By)| =y Bx + T +(-3y)
Substitntes thege values in (i)

VG2 +@y-D =@z + 7 +(-3))°

Taking square on both gides

(3 +By-1* =Cx+ 7 +(-3*
WP+ P —6y+1 =92 +42x +49+ 9

= —Gy+1=42x+49
=5 —6y =42x+ 48
or p=-Tx-8

The equation y=—7x— Brepresents a sl:rmghtlln; in the complex plane.
Show that (x+2) + 57 =;8:if'-§1'g[z+2i J: % for z=x+iy.

z—2i

z+2i  x+iv+H x+z‘(;g'+ 2) _ x+i(y+2)x x—i(y—2)

Selutio = = =
S Y x+iy—2  x+i(y-2) x+i(y-2) x-i(y-2)
= 3+2;'7'_=(I"+y2—4)+4ix= P+y*—4 4§ 4x
225 Jt:’+(_],r—2)2 24+(p-2y IF+O-2¥
( 2\ 3=
A ) z+ _
; _ Arg[z—ﬁ) 4
4 )
} Iz+(}'—2)2 3 4x k2
tanl _ = — " =tan— =-1
= Peyt—4 4 24y -4 4
x‘+(y—2)2)
= 4x=—l(x’+y’—4) = xX+4x+y'=4

Completing the square for x%, we have
(x+2Y +¥'=8
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1.5 Complex Numbers in the Real World

(Voltage, Current and Resistance)
Ohm’s Law is a fundamental principle in physics that describes the relationship
between voltage ¥, current 7 and resistance R in an electrical circuit. Mathematically
Ohm's Law can be expressed by the formula ¥ =IR .
When dealing with alternating cument (AC) cireuils, resistance generalizes
to impedance (Z). Resistance m 8 circuit is due to
inductor (X, ) and capacitor (X,.). Their difference is
reactance X' = (A;) — (X2). Geometrically it is shown
in the adjacent figure, Here Z=R+ X
Then for AC circnits, Ohm’s Law in Terms of
Impedance is expressed by the formula ¥=I-Z.

|ATT 17| If the impedance of cirenit is 11(cos 55.35°+isin 55 35°) ohms ata

voltage of 25(cm3ﬂ tisin30' ) V. find the value of current in the circuit.

Substitute the voltage 25(cos 30+ ¢ sin 30°) and impedance
11(cos 55.35° + i sin 55.35°) into the equation VF'=1Z, where ¥ is voltage, / denote
the current and Z is impedance.

25(cos 30°+1 sin 30°) = I .11(cos 553541 sin 55,35°)

25(cos 30°+i sin 30°)
1 1(cas55.35° +isin 55.35%)

r—.—[ cos(30°—55.35°) +isin(3(° - 55.35°)

X={X)-(X)

R

1= 2.27[cos(—25.35°) + i sin(—25.35°) ~

Express into rectangular form
T=2.27[0.90+{-0.42) |- 2.04-0.95{

Thus, current'is 2.04 — 0,95: 4,

Cryptography: It iz the science of securing information by transforming readable

messages called plaintext into secret code called ciphertext using mathematical

algorithms and encryption keys. It congists of two main processes i.e., encryption to

lock message with complex math, and decryption to unlock it with the right key.

Encrypt the word "MATH" by multiplying it with & complex number

k=12 + 3i and then decrypted back to its originel form using the concept of

muyltiplicative inverse in complex mumbers.

Bach letter of the alphabet ig assigned a numerical value as follows:
A=1,B=2,C=3,...,Z=26
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Fust,weasmgn each letter in the word “MATH™ a complex mumber with
zero imaginary part. The encryption and decryption are shown in the table below

Letter | Complex Number (2)| zenaypted=zxk |zdecrypied = zencrypled / k| Lefter
M 13+0f (13+0D(2+3H)=26+3%| (26 +39)/(2+3D=13+0i| M
A L+0¢ (+0iY2+30=2+3f | 2+30/2+3D=1+0: A
T 20 +0i 20+ 0)(2+3) =40+ 60i] (40+60)/2+3i=20+0i | T
H 8+0i (B+0K2+3)=16+24i| 16+24i/2+3i=8+0i H

P EXERCISE 1.5 _d

=
»

Plot the following points: =
® (275) @ (-3 120) (i) [z, E] ) (5, %)

5 = ; 2 9 ‘l!br 5 5y
(v) ( 2 E) (vi) (—3, —?) (vid )( 12 ]("ﬂﬂ)(—i- E)

2. Express ihe following complex numbers in palac, form:

@ 4+% () 1+ iy —+£: (i) —%—%i
1-i J3+i. & 7 34
™ o S V3 ) 3
3. Convert cach of the complex number z in the rectangular form x+iy:
@ 4(cos % 4isin ) @ 2o Erisa®)
3 T 2% 6
G 12="T, ar?&)ﬁ% () |f=11, wg(z)=—%
) |z];=3§;' mg(z)=-'f—2” (vi) 2 cos (-33) + 2sin (-33)

4, Wz= 9(ws%+mm 5:) and z ,A—S(ces%—:s-m 3] then find

@ z+z @ z-z (i) z-2 v) =

5 We= [cmza—ﬁ +=um23—J and 2.—||[mﬁ-]£+ﬁﬂiﬂll#] then find the
12 12 12 12

following and cxpress the result into x + 7y form

@ z+z @ z-z (iii) 22, (v) 2L




10.

11.

12
13.

14.
15.

16.

17.

18,

19.

21.

22,

1f 2, and 2, are two complex numbers, show that
() Arglaz)=drgz +Argz, () Arr[:—i] =Argz —Argz,
A

Divide z; = 6{cos 150° + { sin 150) by z, = 3{cos 30° + / sin 30”) and express in
x + {y form.

Multiply z; = 2{cos 60" + i sin 60) and z, = 5{cos 90" + i sin 90°) end express in
x -+ iy form.

Find the modulus and argument of z=—2— 2},

Wiite the equation arg(z-zn)—% in carteaiin form, ifz—ba;.

z—14+2i

lf:=x+iyaudarg[ = show that x* + -";§'i+2y 5=0.
z+1-2i é}

If z=x+iy and arg(z—2-3{)- mg(z+2+3;)§?:\hﬂwih12y 3x
Solve fhe equation |z—2:|=’"z+2‘for z=x Q:r\

For £=x-+iy, solve the equation [5z 4 4+ = =[5z-3+2i.

Determing the set of poi x+iy that satisfy the equation
32— 24i=P3z+i. O\
Ifz= .Jr+.tya.'l:lac|w—1—H that |w|=1 = z is real.
z—«f
]leandzgm@womplnmmbmmﬂilzﬂ— 1 = )
=

An AC s@supp]jss a volape of F= 120[{:05%+1an1 ]volls to a circuit

with impedance Z = 1+;J_ ohms, Calculate the current in polar form.

An AC circuit has an impedance of Z = 3 — 6i ohms end is connected to a voliage
source of ¥'=90 + 30i volts. Find the current in both rectangular and polar form.
Encrypt the word "CODE" by multiplying the complex encryption kev k=2 — /.
Then deerypt it back to the original word.

Consider the complex encryption key & = 3 — 34, Encrypt the word "QUIZ", and
then recover the original word using the invemse of the key.

Encrypt the word “CLASS" by adding the complex encryption key k=—3 + 44,
Then decrypt it back to the original word.




Functions and Graphs

INTRODUCTION

Functions are of fundemental importance in mathematics, describing relationships
between inputs and owtputs through a rule of correspondence. Understanding key
concepts such as domain, co-domain and range is essential for analyzing different
types of functions, including one-to-one, onto and bijective functions. Graphical
representation helps in identifying intersecting points, such as where a linear fimction
meets the coordinate axes, where two linear functions intersect or whete a linear and
& quadratic function cross. These intersections provide valuable insights into solving
equations visually. Additionally, exploring aquare root and ciibe root function graphs
allows for a desper understanding of their ynique properties and behaviour. This unit
will enhance problem-golving skills by combming algebraic and graphical approaches
to functions.
2.1 Concept of Function
The term finction was recognized by & German Mathematician Leibniz (1646-1718)
to describe the dependence of one quantity on another, The following examples
illustrate how this term is used:
(i)  Thearea A of s square depends on one of its sides x by the formmls 4= »*, so
we say that 4 is a function of x.
(i) The volume “¥™ ol a sphere depends on its radius r by the formula

V=gxr’, 50.we say that Fis a function of r.

A function is a rule of correspondence, relating two sefs in such a way that each
element in the st set corresponds to one and only one element in the second set.
Thus in, (1) above, a square of a given side has only one area and in, (i) above, a
sphere of a given radius has only one volume.

Now we have a formal definition:

2,11 Definition (Function, Domain, Codomain, Range)

A function ffrom a get X to a set Y ik a rule of a correspondence that assigns to each
glement x in X a unigue element y in ¥, The set X is called the domain of .

The set of corresponding elements y in ¥ i called the range of f. While the
codomaim of a function is the set ¥ in which function’s output values (range) lie.
Unless stated to the contrary, we shall assume herealter that the set X and ¥ consist of
real numbers.
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Co-domain is the et of all possible outputs but the range is the setuel set of ontputs
produced by the function umder the given domain that is range set is always 2 subset of co-domain.

2.1.2 Notation and Value of 8 Function

If a variable y depends on & variable x in such 8 way that each value of x determines
exactly one value of y, then we say that “y is 2 function of x”.

Swiss mathematician Buler (1707 — 1783) invented a symbolic way to write the
statement “y is a function of x” as y = fix), which is read as “y is equal 1o fof x”.

A function can be thought as a computing o

machine f that takes an input x, operates Functipn ) .
on it in some way and produces exactly Ipuix 1%) Output £ (x)
one cutput fx). This output f(x) is called Comgi -

the value of /" at x or image of x under £
The output f{x) is denoted by a single letter, say y and we write y = f{x).

The variable x is called the independent variable of f and the variable y is called the
dependent variable of £ For now onward we shall only consider the finction in
which the variables are real numbers and'we say that fis a real valued function of
real numbers.

Given f(x) =»° - 22+ dx— 1, find: { f10) @ AL
(i) A-2) o) ALY G IEJ.#H
BRI f(x) = - 224 4~ 1
i MO=0-0+0—-1=-1
(@) M={PR-2012+41)-1=1-2+4-1=2
(i) A=) =2y -2(-2P +4(-2)-1=-8-8-8-1=-25
(iv) A1+x)=(1+x-2(1+xF+41+x)-1
=1+ +37+2 -2 - dr 273 +4+4x—1
=r+x2+3x+2

2
&) f[l)=(lj—2(l] +4{1J—1=$—%+5—1, x50
X X X X X X

Find the domain and renge of f{x) =7,
Fur every real number x, f{x) = is a non-negative real number. So,
Domain = set of all real mumbers ; Range /= get of all non-negative real mimbers.
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Findthedomajnandmngeuff(xkﬂ.

X

L Atx=2 and x=-2, f(x)=x‘ 4isnotdnﬁned. So,
Domain = set of all real numbers except —2 and 2 or R—{-2,2}

L£ty=x=x4=>y(xz—4)=x=xzy—4y=x
Py—x—4y=0 R bert
_~EDEJCY -40)-49) Thae mo iwe - types of
o 2y inervals Jown a5 open
' ~and closed interval.
; In an'open interval (g, 5), the
o LEVIFI6Y W,y;eu infs gre not included. In
2y '-uﬁ{pluml_ mliuwl [ Bl
Clearly  is defined forall y# 0 AR e
For y=0, we have ﬂzx:i4:>;=ﬂﬂ
This is f{0)=0

So, range /= et of a1l regl numbers or {—0,%0)

Example[] Findthedomainandmngedff{x)=\l'xz—9.

EZATTTIT, As square root of a negative mumber is not a real number, therefore
¥-920 (i)

Let ¥ —9=0=> x=23 |

Critical points divide the number line into three regions:
Putx=-4 in (i), 16 — 9 =0 (True)

Putx=01in (i), 0 -9 =0 (False) = -
Putx=41in (i), 16 -9 > 0 (True) 3 3

The smallest value of x* —9is 0 (when x=13).

= y=y¥-9=40=0

Aa H increases beyond 3, x* — 9 grows to +oo, 30 ¥ grows 1o +wo,

So, range f* = [0, «0)

2.1.3 Vertical Line Test

The wvertical ling test is a method used to determine whether g graph represents g
function, A graph represents a function if and only if no vertical line intersects the
graph more than once. If any vertical line passes through the graph more than once, it
is not a function.

.
k4
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|
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i
{a) a fanction (b) = fanction {c) mtnﬂn:lmtim (d) net a fusction

2.14 Types of Function

{i) One-to-One {Injective) Function

A function f: x — y is ong-to-one if different inputs produce different outputs, that is
if f (x,) = f(x,) implies x,= x,. This means that no two diffetent elements of the
domain map to the same element of the co-domain,

For example, f(x) = 5x + 7 i3 cne-to-one becaunse if Sx,+7 = 5x,+ 7 implies x = x,.
(i) Omto (Surjective) Function

A function f: X —Y¥ is called onto (or surjective) function if every element in the
co~domain ¥ has at least one pre-image in the domain X, Tn other words, for gvery y
in ¥, there exists an x in X such that f(x}=y

For example, f(x)=2x+3, where the domain and co-domain are both real smmbsers,

Here y=2x+3=bx—y23,HerefDreanhymR there exists y23 m R such that

f[yT_?’J= y. Hence fis an onto function.

(i) Bijective Function
A function f3.X—> ¥ is called bijective if it is both one-to-one and onto.
Piecewise Fometion

A piecewise fumction is a function that ix defined Ty

by different expressions {or “pieces”) over | 3 f

different intervals of its domain, Each piece 2

applies to a specific part of the domain. [ || }" / :

For example, f(x)={2:+1 .lfx-:‘ﬂ _‘:1_3_2-_-{”/1 28
x -1 if x20 || /_2

For x< 0, the finction behaves as 2x+1 and for [ | 3

x20, it behaves as x*>—1 V'
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[T 8| Show that the function f(x) = x-+1, where the domain and co-domain
are all real numbers, is bijective.
Afuncﬁonishijecﬁveifitisbuﬂmne—to—nneanﬂanto.
A function is one-to-one if f{x)=f(x) = %= for f(x}=x+1
Suppose f(x)=f(x,)

= x+l=x+1

= xl =Iz
So, the given function is one-to-one,
It is also onto becsuse for every resl number y, there is a real nurmber x (specifically
x=y— 1) such that f (y —1) =y — 1 + 1 =y, Hence, f (x) is bijective.
2200 6| Show that the function f(x)=x3—2,whmm';;'dﬁmaiuandco-dnmain
are all real numbers, is neither one-to-one nor onto.
T As f(x)=f(x) = ¥ -2=x-2 > .5 =x
Taking square root, we get x, =x; o X, =-x,
This does not imply that x, = x, , for example
n=2x5=-2=x+x, and f(2)=2= f-2).
Thus, fig not one-to-one. '
Also, the element —2 in the ¢o-domain R is the smallest
velue that f(x)=x"-2 “can sattain, and it is only
achieved whx=[}_..'Hnwevﬂr, any number less than —2
(in co-domain R) is not the image of any real mumber x in
domain R, For gxample, fx) =—3 =x"-2=-3has no
real root. Hence, f(x) is nether one-to-one nor onto.

V EXERCISE 2.1 g
l. Given that: (@) fH=r—1 ®) fiR=+2x+3
Find: (@) f(-3) (@ A0 (i) f(x-2) (v) Ax'+3)
2. Find ﬁ"—""i—:'—f@

L A=4&+7 (i) flx)=sinx
(i) fx)=o"+x2—1 (iv) f(x)=tanx

and gimplify where,




9.

10.
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Express the following:

(a) The area 4 of a square as a fimction of its perimeter P,

(b) The circumference C of a circle as a function of its arca 4.
(c) The surface area § of a cube ag a fimetion of its volume V.
Find the domain and the range of the function g defined below:

bx+7,x=5-2

0 e@=35-x (@) 2&)=vx+2 (iif) 8(1)={4_3x .

x+2

) g)=ix—3| ) 6)=7

Given f(x) =" —a® + bx + 1. Iffm =_3and f{-1)=0, l'm.dthe values of @
and b,
A stone falls from a height of 60m on the ground, lhehe:gln h after x secomds is
approximately given by h(x) =40 — 102,
(i) What is the height of stone when: ~
(a) x=1sec? () x= lﬁsw? {c) x=1782¢c?
(ii) Whﬂndoesﬁestunemhthegmpmd?
Consider the function f(x)=3x—5. ¢/,
(i) Determine the domain and range of f (x).
(i) Is the function fone-to-one? Justify your answer.
(iif) Isﬂ:eﬁ:ncﬁonfonmiftﬂgbodmainiuurealmmbm?ﬂxpm
Let: R -» R be defingd By (x) =~ =]
(1) Find the doma:tumd range of f(x). (i) Determine whether f{x) is onto.
(iii} Prove thatf(x) is one-to-one
Consider the function /2 R" — R' defined by f (x) = ¢™. Show that f(x) is &
bijective), 'O
Let grR — R be given by g(x) = 2* — 3x. Determine if g(x) is injective and/or
surjective.

2.2 Finding the Intersecting Point(s) Graphically

The point of intersection is a point where two or more graphs meet on the coordinate
plane. This point represenis the solution to the equation of the given function.

2.2.1 Intersection of a Linear Function and Coordinate Axes

As we know that lincar function is a function in which the highest power of the
variable ig one. While the coordinate axes refers to x-axis and y-axis in the Cartesian
coordinate gystem.




LTI 2 ) Funetions and Graphs <1> Matsematics (11
Find the points of intersection of a linear function y=2x+6and
coordinaie axes graphically.

Tablaofvaluesufy=2x+ﬁmgiven

below:
X y=2x+6
-1 4
0 6
8

Hence, from the above graph, the points (—3, 0) and (0, 6)are’ the points of
intersection of y =2x+ 6and coordinate axes. '

2.2.2 Intersection of Two Linear Functions

The point of imtersection of two linear functions is the point where their graphs cross
each other. This means the two functions have the sate x and y values at that point.
AT 0] 8| Find the point of intersection of (y =3x+2 and y=—x+6 graphically.
CHTTTERT, Table of different values of x andy - [ '
iz given below:

P

x y=3x+2 _v=.-——.;r=F"6
T =] [S);
0 2 " 6
I 5N 5

Byplﬂtﬁngﬁeaﬁuvepninm.wemthat EEEEELE
(1, 5) is the point of intersection of both the - SIS

straight lines as shown in figure.

2.2.3 Intersection of a Linear Function and 2 Quadratic Function

A line and a parabola can gither intersect at two points, one point or not as intersect at
all. If there are two solutions, the system has two points of intersection. A single
solution indicates that there is only one intersection poini, suggesting that the lme
may be tangent to the parsbola If no solution exists, it mesns the line and the
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0 0 / X 2 /

Tero Solwtions One Solution No Sﬂ-ﬂm

9| Solve the linear function y=—x+3 and quadmtlc fimction
y= .7;'2 6x+ 3 grephically,

[EZITTT, Clearly (3, 0) and (0, 3) are the x-intercept and y-intercept respectively of
y=-x13.

gy
Wy

y=x*-6x+3 A ()
Put x= 0 in (i), 5o (0, 3) is the y-intercept.
Put y = 0 in (i), we have
0=x"—6x+3
=—(—6)i~/{—6)’—4(1}(3)" ;
2(1) '
_6+436-12 _ 6424
2 \" 2

ﬁiZJ__3iJ—

=3- J'3+J' 0.6, 5.4
B0 (0.6, 0) and (5.4, 0) are the x-intercepts.
Now we find vertex (&, &) of the parabola

by i
ﬁ == = 3-

2a A1) {3,—6)
k=) -6(3)+3-—6 1

So, the vertex is (3,—6).
Hence (0, 3) and (5,—2)are the solutions (points of imtersection) of the given
funetions.
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2.3 Grapll of the Square Root Function

9| Graph the square root function y = 24/x +1
Clearlyﬂmdomainofy= 24/x +1i5 x>0, 83 the square root of a negative
numberisnotamalnumber.'l‘hemgeafy=2~f;+lisy=_’l.

Table of values and the graph of the function are given below:

x | p=2x+1
0 1 5
1 3 Bl
2 38 7
3 35 f
4 5 i
4
5 5.5 i
6 59 5
T 6.3 1
8 6.7 id
- 0l-1.2 3 4 5 6 7 & 9 1011
9 7 o
10 73

2.4 Graph of the Cube'Root Function
Graph the cubetdot function y=¥x—1
[T, Table ofva.lues and the graph of the function are given below:

Jl.y
X y 1" ! ! 25
=5 —13 1 2
—4 -1.7 b 15
-3 1.6 t—1 =1
e Bl
: .. ‘4—54—3—2—10}2345 §
=5] 0.5
0 Lo

0

1

2 | -15
3 1.3 -2
4

5

14 —2.5
1.6 {34
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2.5 Rea] Life Applications
Growth and Decay in Finance (Predicting Long-Term Stock Prices)
When something increases in quantity or size over time, it is called growth. For
example, money in 8 bank account earning interest (it grows larger), & population of
rabbits is increasing over months.
When something decreases in quantity or size over time, it ig called decay. For
example, & madioactive substance 14 losing its strength over years, a8 cup of hot
coffee is cooling down over time,
The value of a stock follows the exponential growih model P(f) = Pe”,
where P, is the initial stock price, r is the growth rate per yearand ¢ is the time in
years. Suppose a stock is currently valued at Rs. 5,000, and it is expected to grow at a
rate of 5% per year.
{i) Find the value of the stock after 10 years,
{(ii) After how maty years will the stock double in value?
AT, ()  The formmla for the exponential growth is:
P(f) = Py -
Given P, = 5000, r =0.05 (5% growth mate), and ¢ = 10 years.
P(10) = 5000£2541¢ = 5000 25
Using €™ = 1.6487
P(10) = 5000-x.1.6487 = 8244

So, the value of the stock aftér 10 years is approximately Rs. 8244
(i) ~We want to find ¢ when the stock doubles, i.c., when P(f) = 2P, Using the

equation;

2P, =P, "
Dividing both gides by P,,, we have 2 =¢"
Taking the natural logarithm en both sides: In2 = rt
In2
r
0.6931

0.05
=13.86

So, the stock will double in value i.e., approximately 14 years,

and t =




2, <s:> Mathematics
The concentration of a pollutant in & lake, in parts per million (ppm),
decays over time according to the function
100
()= oy
where £ is the time in days since the pollutant was infroduced.
(i) Whatis the concentration of the pollutant after 4 days?
(ii) After how many days will the concentration drop below 10 ppm?

(1) The pollutant concentration fimction is C(t)=— 100 . whe;re tis the
Jt+1

fime in days,

Concentration after 4 days:

100
=
_100
Y
= 44,72 ppm
Thﬁmncmtmﬁnnaﬂnﬂdaysisabnutﬂ?zmm
(ii) When will the concentration drop below 10 ppm? Set C(£) = 10:
100
t+1.
=  Jii=10
= t+1=100
= =99
After 99 days, the concentration will drop below 10 ppm.

P EXERCISE 2.2 g

1. Find Eh;t point of imtersection of the coordinate axes end the following linear
functions graphicaily:
) y=-35x+10 () y=2x-1

10 =

(i) y=%x—3 (iv) y=3x+g

2. Find the point(s) of intersection of the following functions graphically:
i) fl{x)=2x+5, g{x)=—x+5
(i) fO)=3x-2, g(x)=10—-x




i) FO)=2¢-4 , glx)=3x-1
() S()=-35-4, g(x) = x+3
W) F@=x-1, g(x)=x"—4x+3
i) f()=3x+4, g(x)=x"+22-8

(vi) fix)=-2x-1, glx)=2"-4dx
(vii) f(x) =22 - 3x+ 2, gl) =x +6

Graph the following functions: C
@ y=+3x @ p=vr+s
(iii) y:-%q’; (iv) y=- f_xj'.l +_'2,I

&) y=V2x+1 @) y=243-3

(vii) y=4x"+x-2 _«"'-’\ )

A building’s height over time is modclgﬂ.by H(f) = 100 + 20¢ which is in metres
and ¢ is the time in months, Tha ﬁx:ihht of a growing tree nearby is given by
@) =50 + 106+ £,

(i) At what time wﬂlﬂlabuﬂdingandtmehavethﬂ same height?

(i) What will that hmgmbe?

Skeich the graphs of: bﬁlﬁ functions and determine the time when the tres will
avertake the hmght &f the building,

A rm:lmacmrﬁ subutnncc has & half-life (/) of 2 years. If the initial quentity O,

mZDﬂgEﬂnsandlheexponmualdacayﬁmcumm = Qu[ T,thenﬁnd the

remnaining quantity after 6 years graphically.



Theory of
Quadratic Functions

INTRODUCTION

This unit explores methods to find the maximum and minimum values of quadratic
functions using completing the equare and graphical analysis. It also covers the inverse
of quadratic fimctions, determining their domain and range. Additionally; students will
learn to solve absolute value quadratic equations and inequalities, as well as equations
of rational, radical and exponential forms that can be reduced to quadratic equations.
Finally, the unit demonstrates the practical applications of quadratic equations and
inequalities in solving real-world problems, providing 2 strong foundation for problem-
solving and analysis.
3.1 Quadratic Function
A quadratic function is a polynomial function of degree two. It is typically expressed
in the standard form:

=t +bx+e :
where g, b and ¢ are real numbers, and a # 0.
3.1.1 Anslyzing Quadratic Fugction by Sketching

As we know shape of the graph of a quadratic
function f{x) = ax* + bx + ¢ is a parabola. The
parabola opens upward or downward, depending on
the gign of the leading coefficient g, as shown in the
given figure.
The tip of the parabola, labeled as ¥ in the diagrams above, is known as the vertex
ha\dngcoordiﬁates{k, k). The vertical line passing through the vertex serves as the
axis of symmetry for the parabola. The vertex represents a tuming point, where the
graph changes direction.

o« Ifa>(), then the vertex ig a minimum point.

o Ifa<{), then the vertex is a maxinmm point.
For sketching the quadratic function, we need to find the x-intercept, y-intercept and
the vertex. For analyzing the skeich of quadratic function, we find whether the vertex
i5 a minmum or a maximum point and indicate the intervals where the function is
increasing or decreasing.

a<i

=1
v =
-}




M)Mﬂwrmﬂm <;s> mmﬂu
LA 1| Sketch and analyze y =22 —2x + 3.
AT y=—%—2x+3
The j-intercept is y = (0} —2(0) +3 =3
The x-intercepts are found by solving the equation:
2=2x+3=0 or xX*+2x-3=0
*+ix—-x-3=0
xx+3)-1x+3)=0
x+3)x—1)=0
x+3=0,x—1=0
x=-3,x=1
Now, we find the vertex
)
2a 2(-1)
k=—{-1P-2-1)+3=-1+2+3=4
So, the vertex (1, 4) is a maximum point. The fumction y
is increasing on (—o, —1) and decreasing on (—1, cc).
3.12 Finding Meaximum and/ Minimum Values of Quadratie
Functions by Completing. Square
Completing the square is a techinique used to rewrite & quadratic function
fx)=ax® + bx + ¢ in the following vertex form:
Ax)=al—hF+k

. b b
where vertex=(h B,k =— — and f=c——
& By =- - e

e Ifa>0,theminimum value of f{x) atx= his k.
o I u<0,the maximum valus of f{x) at x= his k
[FTnnun2| Find the maximum or minimum value of
f(x) =—2x*+ 4x+ 3 by completing square.
f0) =202~ 22 +3
fx)=-2(—-2x+1-1)+3
fix)=-2{x-1p-1]+3
Ax)=-2x—-1¥P+2+3
f(x)=—"2x—1Y+5

Hers a=—2<0

Therefore, the maximum value is 5, which occurs when x=1.

H----é- o -




|
i

-

Fmdthsma:nmmurm]mnnmwlueof
f(x}_f 2x-3,

EXTTIT, Given that f(x) = x*—2x—3
Herea=1,b=-2,c=-3

_b_ (D, ¥
2a 2(1) =
Y S ') W
and k=g Az 3 aQ) 4

Here a=1>0

Therefore, the minimum value of f{x) atx =118 -4,
3.2 Inverse of Quadratic Function
Quadratic functions are typically not one-to-ong over their entire domain. To find an
inverse for a quadratic function, we nmst restrict its domain to a portion where it is
one-to-one. Commonly, we restrict the domain to either x = h (where k is the
x-coordinate of the vertex) or x < k.

Find the inverse of f(x)=x"44x+3,x2-2. Also find its domain and
THnge.

BT An) =x"+4x+3 , x2-2
Let y=x+4x+3

=y +4y+3 (Interchange x and )
V+ay+ 3,__—x= 0
_—4#J(a - 403 —x)
2(1)
—4+16-12+4x

B 2
_ —4+ql4+4x
2
_ 4t 21+ %
2
[ =2t41+x (Replace y with £~ (x))
The above inverse function has both a positive and a negative compenent. To determine

which is the inverse, we find domain and range of the given function.
Domain £ = [-2, o)

3

L 5

2L .
1 TR = | RN P R R

(Using the quadratic formula)

y




Toﬁndmnge,weprweedas
f&x) =x*+4x+3
= fd) =@x+2y-1
Therefore, minimum value of f{x} is —land hence
Range f =[-1, o0)
Domain f~1=[-1, %) , Range /1 =[2, @)
Now, we substitute any value of x that falls within the domain of £~ (x). We choose
the value x =0,

fl@=-2+1+0=-
FU0)=2-1+0=-

We notice only —1 lies in the range of f. Therefore, we dlscardnegatwe component.
Hence fl(x)=-2++1+x
3.3 Absolute Value
The shsolute value of x, in defined as
, x20
£ |={ -x, x<0
3.3.1 Absolute Value Quadraiic
Equations -
To solve the absolute value quadratic equations, all answers must be substituted back
into the original equation to-verify whether they are walid or not. Sometimes,
eous” solutions may. appear which are not valid and must be eliminated from
the final answer.

[T 8 Solve e 4| = 5

Ul
e
2—-4=5 of X*—4=-5
=9 or ¥*=-1
x=13 or x=:|:-J—_1=imaginm'y
Cheek: For x=3 For x=-3
34| =5 [3%)-4|=5
5] =5 5| =
5=5 5=5

Hence solution set = {+3}




33.2 Ahsulutc Value Quadratic Illci]llﬂ]ltlﬂﬂ

Absolute value quadratic inequalities are inequalifics that involve & quadratic
expression within abschute value bars, They arc generally of the following forms:

lax® +bx+e<d,|@’+bx+cl>d, |@+bxtc <d, |al+bx+el>d

Solve |xz—6x—4|<3
EXTTTT, b — 6 — 4 <3
3<-6Gx—4<3
3<x*—fx—4 and
Z—6x-4+3>0 and
X-6x—1>0 B
Here we solve 2 —6x—1=0

—(—6)++/(=6)* —4(D)(=1)
2(1)

6+36+4
x  — - P T ety T L1 L
2
6=/40
)
6+2:/10
A2

x =3+./10 N
x=3-4/10 % 3+ 10
x=-0.16 , 616
Hence critical values divide the number line into three regiona.
x<-018 —0.16 <x <6.16 5 %> 6.16

-2 -l 0 1 2 3 4

Test x =—1 in (i), we have

(-1P-6(-1)-1>0= +6>0 (Trus)
Test x = 0 in (i), we have

(0P -6(0)-1>0 = -1>0 (False)
Test x = 7 in (i), we have

(MP-6(N-1>0 = 6>0 (True)
Solution set is (-0, 3 —/10) w (3 + /10, )

2 6x-4<3
P-fx-4-3<0
2—6x-7<0 iy

x=

x:

F

Ly =
=
e |




Naw, we conmdﬁ' {ii) and solve

©—6x—7=0
X+x—Tx—7=0
xx+1)-T(x+1)=0
x+1)x-7)=0
x+1=0 , x-7=0
x=-1 . x=7
These critical values divide the number ling into three regions,
< x<-1 b —l<x<7 51 x>7 >
+—i i i i . i i i i i i I~ —
<4 3 -2 -1 0 1 2 3 4 5 s___-ﬁ'__,.'a 9

Testx=-2 , x=0 andx=10 in (ii), we have

(2 - 6(-2)-7<0 = 9<0 (False)

(0P - 6(0)-7<0 = -7<0 (True)

(10— 6(10)—7<0 = 33<0 (False)"
Solution set is (-1, 7)
Hence the solution set of the given absolute vnluc quadratic inequality is

{-=,3-V10)L 3+ 10,0} 1 (1 )= (1, 3- Vi) U 3 + V10, 7)
WV EXERCISE 3.1 _d
1. Find the maximum or minirmiin value of the following quadratic functions by

completing sguare: \
M fOI=%"+6x+13. (i) flx)=x"+4x

(i) Fx)=-x .+_§;_+ i3 (iv) f{x)=—%*-3x—5
) fx)=3"+6x-13 Vi) Fx)=—2%"—x+21

2, Find the maximum or minimum point by sketching the following quadratic
functiond; Also find their domain and range:

M f=x"-4x () fx)=x"-5x+6
(i) f(x)=—2+2x—8 (iv) f(x)=x"—4x+4
(V) f(x)=x"+2x-83 (v) f(x)=6—x—x"
3. Find the inverse of the following quadratic fimctions. Also find their domain and
range:
M fx)=x*-3, x<0 (i) f(x)=x*+6x+4, x<-3

(i) f)=2x—8x+11, x22 (iv) f(x)=3x"—-2x16, x25
& f()=2(x-3)'+], x23 () f)=-3+4F-5 x<—4




renenie (TR

4. Solve the following absolute value quadratic equuhum and inequalities:

@ |+1=5 () |#+5x+4=0 () p*-6r+8=
() [3-Tx+2=x"-x+1 (V) |5*-4/<5 (vi) [F-3x+2|>4
(vil) | —5x+6/<x+2 (vild) |2" -3x—5/ <4
34 Solutions of Equations Reducible to the Quadratic
Equatinn

e

radical equations,

34.1 Rational Equations Reducible to the Qnadral]c Equatmn

A rational equation is an equation containing one or more rational expressions, where
rational ﬁxpmsmns typwa]l]r contain a varigble in the denominator.

Sul\re —+——1 720, x#-1

Solution 1+i =]
x x+1

Multiplying both sides by x(x+1), wehmru
(x+1)+2x=x(x+1)

x+1+2x=x"+x
Ix+l=x*+x
P +x—-3x-1=0 -
' —2x—1=0'
L2 EDENED -4
2Q1)
2+J4+4

2
248
S 2

2422

2
=1+2
Hence, Solution Set = {1:&}




3.4.2 Radical Equations Reducible to the Quadratic Equation
Equations involving radical expressions of the variable are called radical equations. To
solve a radical equation, we first obtain an equation free from radicals. Every solution
of radical equation is also a solution of the radical-free equation but the new equation
has solutions that are not solutions of the original radical equation. Such extra solutions
(roots) are called extraneous roots.

Solve vx-+8+vx+3=+12x+13
Jx+8+Jx+3=J12x+13
Squaring both sides, we get
x+8+x+3+2(Wx+-8)Wx+3) =12 +13
2 +8)Wr+3)=10r+2

= JE+8)(x+3) =5x+1

Squaring again, we have
P+ 11x+24 =252+ 10x+ 1
= 24 —x-23=0

= (24x+23)(x—1)=0

x=—§orx=1
24

On checking we find that —g is an extraneons root. Hence solution set = {1}

3.5 Real World Problems of Quadratic Equations and
Inequalities
We shall now proceed to solve the problems which, when expressed symbolically, lead
to quadratic equations in one variables,
In order to solve such problems, we must:
(i)  Suppose the unknown quantities to be x or y etc.
(ii) Translate the problem into symbels and form the equation or inequality
salisfying the given conditions.
The method of solving the problems will be illustrated through the following examples:




mamenates (100

LETTTUT 9| The length of a room is 3 metres greater than its breadth. If the area of the
room is 180 square metres, find length and the breadth of the room.
Let the breadth of room = x metres
end  the length of room = (x + 3) metres
3 Area of the room = x{x + 3) square metres
By the given condition, we have
x(x+3) = 180
= 2P+ix-180=0
= (x+15x-12)=0
x==15 or x=12
As breadth canmot be negative 30 x =—15 is not admissible.

Whenx=12, wegetx+3=12+3=15
Hencebrﬁdthufthermm—umeu‘esmdlengﬂmfthemam 15 metres.
[ETHTT10] A company mamufactures laptops and its weekly profit function (in
thousands of dollars) is P{x)=—x"+2x+3, where »is the number of laptops
produced (in hundreds). Find the range of production levels where the company
mekes at least $4,000 profit.

EITCTT, Here P(x)24

—x +2x+32>4
- +2x+3-4>0
- +2x-120
P =2x+150
(x-1°<0
This only holds troe when (x—1)* =0 = x=1

The mmpw:y-makcs exactly $4,000 profit when 100 laptops are produced (since x =1
meang 100 laptops). There is no production level whers profit is more than $4,000.

P EXERCISE 3.2
1. Solve the following equations:
L1 4x L x  xtl_ 5
(1) £+F x#ﬂ (11) m+7—2,1: l,ﬂ
i) k=T sy oo

#+1 x+2 x+§




b 11 L %+l x-1
T by e +——=12, 1, =
@) —1+m—1 s T B - T i
(i) 3% +15x— 245+ 5x+1=2 (vil) V2x+8+x+5=7
(viii) Y35 +4 =2++/2x—4 (ix) vx+7+vx+2=+6x+13

(x) VYx+5-+fx-3=2

A farmer bought seme sheep for Rs. 9000, If he had paid Rs. 100 less for each,
he would have got 3 sheep more for the same money. Howmankggecp did he
buy, when the rate in each cage is uniform?

A man sold his stock of eggs for Rs. 2400. If he had 2 dozen he would have
got the same money by sclling the whole for Rs. 0.50 pﬁ:_ cheaper. How
many dozen eggn did he sell? @

A cyclist travelled 48 km 4t a uniform speed. Ifhulg&d velled 2 km/hour slower,
hewuu]dhav‘emkﬂn2hnurumnratopetfann\?1giaumq. How long did he tuke
to cover 48 km?

To do a piece of work, Abdullsh ﬁdaysmnrethnnhb&lﬂ}ladi.Togcthﬂ-
they finish the work in 12 days. 4 ng would Abdul Hadi take to finish it
alone? g,\
The braking distance (in metrdg)iof  car is modeled by:
d(5)=0.025"+0.1s, wbéa\mthespeedofcarin]imfh
lfthemax:mlmsafé} d:lstmeemSﬂ metres, find the range of speed where
bmkmgmaafeQ

the height function A(f)=—5¢"+20t+ 30, where hf¥) is the

helg rQh'esandtmthcumgmsecands Find the time inferval during which
tmatlaasﬂﬂmctrasabnvuihngrmd.



Matrices and
Determinants

INTRODUCTION

This umit introduces the fundamental concepts and operations of matrices, equipping
students with the skills to perform matrix addition, subtraction and multiplication
involving both real and complex entries. It explores the essential properties of
determinants and provides techniques for evaluating the determinant of 8 3x3 matrix
uging cofactors and determinant properties. Students will Jeamn to apply row
operations to determine the inverse and rank of matrices, a8 well as distingnish
between consistent and inconsistent systems of linear equations through practical
examples. The unit further explores into solving systems of linear equations, both
homogensous and non-homogeneous, using advanced methods such as matrix
inversion, Cramer’s Rule and Gaussian elimination, Emphasis is placed on the resl-
world applications of matrices in diverse fields such as graphic design, cryptography,
deta encryption, geomeiric transformations and highlighting the importance and
versatility of matrix algebra in solving complex, practical problems.

4.1 Matrix

While solving linear systems of equations, a new notation was introduced to reduce
the amount of writing. For this new notation the word matrix was first used by the
English mathematician Jameg Sylvester (1814 — 1897). Arthur Cayley (1821 — 1895)
developed the theory of matrices and used them in the linear transformations. Now-a-
days, matrices are used in high speed computers and algo in other various disciplines.
The concept of determinants was uged by Chinese and Japanese mathematicians but
the Japanese mathematician Seki Kowa (1642-1708) and the German Mathematician
Gottfried Wilhelm Leibniz (1646—-1716) are credited for the invention of
determinants. G. Cramer (1704-1752) employed the determinants successfully for
solving the sysiems of lincar equations.

A rectangular array of numbers enclosed by a pair of bracket is called a matrix such as:

230

2 -1 3 . _ 1-14 -

[—s 4 7] W o 3,6 @
411



<> stacnts (11 S
calladonlnmm The numbers used in rows or columms are said to be the entries or
elements of the matrix.

The mairix in (i) has two rows and three columns while the matrix in (ii) has four
rows and three columnsg, Note that the mumber of the elements of the matrix in (ii) is
4x 3=12, Now the general definition of a matrix is:

Generally, a bracketed rectangular aray of mn elements a4(l, 2, 3, ..., m
j=1,2,3, ..., n), arrenged in 7 rows and » columns such as:

Gy, Gy Gy ' 4,
Ewa a. %
TEE G

Gu gz By " By,
it called an m by » matrix (written a5 mx nmatrix), where mx 7 18 called the order
of the matrix in (iii). The matrices are usually represented by the capital letters such
as 4, B, C, X. ¥, etc., and small letters such 88 @ b, ¢ L m, n, or a,,a,,,4,,, ..., efc.,
are used to indicate the entries of the matrices.

Let the matrix in (iii) be denoted by 4, The ith row and the jth column of 4 are
indicated in the following tabular representation of A.

Jth cclumn
4

[ a, By, Gy v iy &, |

Gy > B Bp vt Gy vt Oy,

@y Gy Gy GSJ e Gy

= 3 : : ; : (iv)

ﬂhm —>| 8y dy dy _"d‘ wve By

| Byt Bz Oy At T |

The elements of the ith row of 4 are 4, a,, a4, ... q;... 2, while the elements of the
Jjth column of 4 are @, @,, 4;..a,...a,,. We note that a, is the element of the ith
row and jth columm of 4. The double subseripts are useful to name the clements of

2 -1
the matrices. For example, the element 7 is at a,, pusiﬁuninthnmah‘ix[ .4 ﬂ

For convenience, we shall write the matrix 4 as:
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A=[a), x,orA=[a] fori=1,23, .., mj=1,23, .., 1 wher a, is the
element of the ith row and jfth colummn of 4.
The elements (entries) of matrices nsed not
always be numbers but in the study of | Thematrix 4iscalled real matrix
matrices, we shall take the elements of the | if all of its elements are real,
matrices from R or C,
How Matrix or Row vector: A matrix, which has only one row, i.e., 1x» matrix of
the form [a, a, a, .. a,] issaidto be a row matrix or a row vector.,
Column Matrix or Column Vector: A matrix which has only ehe column ie.,
@ '
Gy

an mx 1 matrix of the form | a5; | is said to be & column matti o a column vector.

Ong
A 2
For example [1 -1 3 4] is a row matrix having 4 columns and |—1{is a column
' 3
matrix having 3 rows.
Rectangular Matriz: If m# n, then the matrix is called a rectanpular matrix of
order mxn, that ig, the matrix in which the number of rows is not equal to the
number of columns, is said to e a rectangular matrix. For example;
2 =30
[2 3 1:|andl il are rectangular matrices of orders 2x3 and 4x3
-1 0 4 315
e 1 2
respectively.
Square Mafrix: If m = n, then the matrix of order mx 2 is said to be a square matrix
of arder n or m. i.¢., the matrix which has the same number of rows and columngy is

1 1 2
2
called a square matrix. For example: [[II'],I:_l z]md 2-1 8| are square
3 5 4

matrices of orders 1, 2 and 3 respectively.
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Let A = [ay] be a square matrix of order m, then the entries a,, @,,, 4y, .., a, form

the principal diagonal for the mairix 4 and the entries @, 4, s G e ps ~ov Gei2r @

form the secondery diagonal for the matrix 4. For example, in the matnx

Gy &y Gy Gy

@y d2 Gy G . B —
, the entries of the principal diagonal are a,,,4,,,@,.@,, 9nd the

Ay 933 Gy Gy

Gy G Gy Gy

entrics of the secondary diagonal are a,,a,,a,,.4,, .

The principal diagonal of a square matrix i3 also called the leading diagonal or main

diagonal of the matrix.

Dingonal Matrix: Let4 = [ay] be a square matrix of order n,

Ifay = 0 for all i= jand at least one ay = 0 for { =, that is, some elements of the

principal diagonal of 4 may be zero but not all, then the matrix 4 is called a diagonal

. 6 D 0000
1 \
[7],]10 2 o andgﬂ_ggmdiagonalmau'ices.
00 5
0 0.0 4

Sealar Matriz: Let A = [ay] be g square matrix of order 2.
If ay =0forall i+ jand ay =& (some non-zero scalar) for all i =j, then the matrix
A is called a scalar matrix of order #. For example:

a 0 0 3000

70 . 0300 :

0 7/ 0 a 0)(a+#0) and 0030 are scalar matrices of order 2, 3 and 4
0 0la 0003

respectively.

Unit Matrix or [dentity Matriz: Let 4 =[ay] be a square matrix of order n. If a;, =0
forall i+ j and a; =1 for all { =j, then the matrix 4 ig called a unit matrix or identity
matrix of order n. We denote such a matrix by I, or simply f and it is of the form:
1 0 0 -
010 -0
L={0 01 -

000 -1
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100
Thaidmﬁtymamxofmaisdmtadbyf,,tha:ia,f,{n 1 u}
001

Null Matrix or Zere Matrixz: A square or rectangular mairix whose each element is
zero, is called a mull or zero matrix. An mx n matrix with all its elements egual to
zero, is demoted by G, ,. Null matrices may be of any order. Here arc some

examples:

DDGOUDBDDD
[n],[nno].[ ][ }o 0000

000 DDD 000 0

are null matrices of order 1, 1 % 3,2 x 3,2 x 2, 3 x 1, 3 x4 respectively,

Equal Matrices: Two matrices of the same order are said to be equal if their
corresponding entrics are equal. For example, 4 = [a.], ., ,and B = [5], , , are
equal, i.e., 4 =B iff a, =5, fori=1,2,3,.,m, j=123,.. n In other words, 4
and B represent the same matrix.

Transpose of & Matrix: If 4 i3 a'matrix of order mxn then an A m matrix
obtained by interchanging the rows and columms of 4, is called the transpose of 4. It
is denoted by 4" Let 4=[a,),., then the transpose of 4 is defined as:

A' =[d;], ., Where ay=a, fori=1,2,3,..,nand j=1,2,3, ..., m

\ D by by by by
For example, if B=[by 1,y =(8y By By by |, then
by by By by

B =[b)],, where b=, fori=1,2,3,4andj=1,2,3 e,

bl'l bI'Z b:!- b].l bZI b!-'l

By e Ba| |Ba Bu b

by by by |by by By

b;] b’ﬂ b:a bl" bil- b34

Note that the 2° row of B has the same entries respectively as the 2™ column of
B' and the 3™ row of B has the same entries respectively as the 3™ column of B ete.

Bt




4.2 Matrix Operations

Matrix operations involve various techniques and procedures applied to matrices.
These operations are foundational in linear algebra and have applications in
numerous fields such as computer graphics, physics, statistics, etc. Here are some key
4.2.1 Addition of Matrices

Two matrices are conformable for addition if they are of the same ordsr.

The sum 4 + B of two mxn, matrices A=|a, | and B=[b, | is the arx nmatrix

C=[cy:| formed by adding the coresponding entries of 4 and B together. In
symbols, we write as C =4 + B, that is:
[c#]=[ay+b,:| where ¢, =a, +,for i=1,2,3,.., m;j=1,23,.. n
4.2.2 BSubtraction of Matrices
If A=[a,]and B =[b,]are matrices of order mx n, then we define subtraction of B
from A as:
A—B =4+(8) |

= [ay]+[_bg] =[ay+(_‘bg)]=[ﬂ¢_bg] for i= 1125 3! "'!m;j= 1I2’3I reny PR
Thus, the matrix 4 — B is formed by subiracting each emiry of B from the
corresponding entry of 4.

IfA:é ? 21 %]andﬂ:F ;—? -i],thenshnwthat
05216 31 2 -1
(A+B) = 4"+ B’
Solution
1 001 2] [2 -1 3 17 [142 0+(=) -1+3 241
A+B=[3.1 2 5(+|1 3 -1 4(=|3+1 1+3 24(-1) 5+4
0 -2 1 6]/ |3 1 2 -1f [0+43 241 142 6+(-1)
3 -1 2 3]
-4 4 1 9
3 -1 3 5
3 4 3
and (A+B)f = 2‘ ‘1" 31 )
395




1 3 0 2 1 3
s o1 -2 . -1 3 1
A'=l_14 (|mB=4 5 ,
2 5 6 1 4 —1
"1 3 0] 2 1 371 [3 4 3
R I T I N ) E )
= ARES L, 1M a2 2 13 (1)
2 5 6/ (1 4 <1 [3 9 5

From (i) and (ii), we have (4+B) = 4"+ B
4.2.3 Scalar Multiplication
fAd=[a,]Bmxn matrix and k is a real or complex number, then the product of k and
A, denoted by &4, lsthcmamxformedhymlﬂuplmcﬂohentryofdbyk,ﬂmns
kd=[ka;]
Obviously, order of k4 is mxn. Y f;ﬂaﬁ:ﬂ?:nﬁ;:
4.24 Multiplication of two Matcices
Two matrices 4 and B are said to be conformable for the product A3 if the mumber of
columns of 4 is equal to the number of rows of 8.
Let A=[a,] be s 2x 3 matrizx-and B = [5,] be a 3 X 2 matrix, then the product AB is
defined to be the 2x 2\ matrix C whose element c,is the sum of products of the
corresponding elements of the ith row of A with elements of jth column of B. For
example, the elemnnt ¢,, of C ie shown in the figure (A), that is

1" colemn of §

>y

by
T
T rowol A 3y O iy

Figure (A}
€y = Gy By + aphy, +ay by, Thus

AB:{GH & au] P 5 =[qh1+%bm+aubu ﬂubu"'“ubm"'“ubu] o

@y Gn Gp ::I z Ay +Bpbyy + @By, Gybyy ARy +anby




mamenates (100

By By
bnay, + 8,6, Byay, + b6, bya;+Bgan,

=|byay, + bty by +byay  byeis+Dbpay (ii}

| byayy +byay,  byyayy +byyay,  Byays + by,

From (i) and (ii), 48 and B4 are calculated their orders are 2x2and 3Ix3

respectively.

Notel. In general, A8+ BA

Note 2. I the product A8 is defined, then the order of the productcanbe illustrated as

given below:

Order of 4 mxn
Order of B Cnxp
Order of 4B m:-:p
2 -1 2. =2 3
AT (If A=1 2 -3|andB=|-1--4 6], thencompute 42B.
1 2 -2 0 -5 5

2 -1 042 -1 0

A=44=|1 22 3||1 2 -3

12 =211 2 =2

(4140 -2-2+0 0+3+0] [3 -4 3
2+2-3 —-1+4-6 0-6+6|=|1 =3 0
24+2-2 —1+4-4 0-6+4] |2 -1 -2
- (3 -4 3 2 -2 3
A*B=|1 -3 0 ||-1 -4 &6
2 -1 -2|]10 -5 5§

9-

3

6

[(6+4+40 —6+16-15
=(2+34+0 —2+124+0
| 4+1+0 —4+4+10
Note: Powers of square matrices are defined as:
A =Ax A A =AxA%A
A" =4 x4 x4 %+ to n factors.

24+15 e -5 0
—-184+0 |=|5 10 -15
-6—-10 5 10 -10
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4.3 Prnpertles of Matrix Addition, Scalar Mulfiplication and
Matrix Multiplieation
If A, B and C are conformable for the indicated sum or product of matrices and ¢ and
d are scalars, then following properties are true:
@ Commutative property w.r.t. addlitlon: A+B=8+4
(i) Assoclative property w.r.t. addition: (4+ B)+ C=A4+(8+C)
(ill) Associative property of scalar muitiplication: (cd)d = c(d4)
@v) Existence of additive identity: A+ 0 = O+4=4 [i,i“ | m;: ]
(v) Exlstence of multiplleative {dentity: I4 = AI=4 (¥is unit/identity matrix)
(vi) Distributive property w.r.t scalar multiplication: , ()"
(@) cld+B)=cd+cB (@) (e+d)d= 6‘4"'4*4
(vil) Associative property w.r.t. multiplication: A@C‘) (Am]C
(viii) Left distributive property: A(B+C) =48 * AC
(ix) Right distributive property: (4 +B}C=A=C +BC
(z) clAB)=(cd)B=A(cH) p

-0

- 1 1 -1 0
[ATTa3| FindABandBAif A=|1 4 2|and B={2 3 -1
306 1 =2 3

Solution %7

aX [ 221+ 0x2+1x1 2x(-D)+0x3+1x{(=2} 2x0+0x(-1)+1x3
= Ix1+4%2+2x1 Ix(-D)+4x3+2x(—2) Ix0+4x(-1)+2x3
[3x14+0x%2+46x1 3Ix{-D+0x3+6%(-2) 3x0+0x(-1)+6x3

3 -4 37
=ln 7 2 @
9 -15 18
1 -1 o0[2 0 1
BA=|2 3 -1|[1 4 2
1 -2 3[[3 06
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[1x 2+{—1]x1+ 0x3 1x0+(-Dx4+0x0 Ix1+(-)x2+0x6

= 2% 2+ 3Ix1+(-1)x3 Z2x0+3x4+(-Dx0 2x1+3x2+(-D)x6

[Ix2+(-2)x1+3x3 Ix0+(-2)x4+3%x0 Ix1+(-2)x2+3x6

1 —4 -1

4 12 2 (i) Matrix multiplication is not

9 -8 15 enmnumivamsmml.
Thus, from (i) and (i), 4B+ BA

FEXERCISEMJ
1. 1If A=[g, L., then show that
@) LA=4 @ Af,=4 o
0 -1 2 3 1 U ™ 0 -2
2, I'F.-!=321,B=I24md8’——50,ﬂ1cnﬁnd
1 0 4 12 1]A 3 4 -1
@ A-B @ B-C (i) (A-B)-C @) 4-@B-C)

| i 2 =5 1 f2u 1
3. Ifd= |, B=|__ and C=|" |, then show that
1 = A 1] &« O | = i

6 (ABC=4BC O (i) AB+C)=AB+AC
4. If A and B are squarc magricgh of the same order, then explain why in general;
@) (A+B)2¢A’+2.JB+B’ (i) (A—B)Y' = A -24B+F°
(i) (4+BYA-Byz 4 -B*
-1 2 %
5. ifd=| 1P 2|, then find 4+ 4, A— 4, AL, A'Asnd (4.
J53 75 3

2 0 1
6. Solve the mairix equation 4* —54-+4i -X =0 if A=[2 1 3
1 -1 0
7. If A and B are two matrices such that A8 = B and 84 = 4, show that
A+5=A+B.
4.4 Determinants
The determinants of square matrices of order n23, can be written by the following

pattern. For example, if#=13
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@ G & &y @ 4
A=|a, a, ay | then thedeterminantof d =|d=|ay, 2, a,
ay 8, 4y e

Now our aim is to compute the determinants of matrices of various orders.
4.4.1 Minor and Cofactor of an Element of a Matrix or its Determinant
Minor of an Element: Let us consider 8 square matrix 4 of order », then the minor
of an element &,, denoted by M is the determinant formed by deleting the ith row
and the jth column of A(or|4)).
Gy Gy Gy
For example, consider a square matrix 4 of order 3, A=|a,, @, @y
L& Gy Gy
To find the minor of the element a, ., delete the first row and second column of 4
By @y Gy
1 ‘an By

: Gy Gy
By Byl G ' :

Cﬂﬂﬂ;}_r of an Element: The cofactor of an element a, of & square matrix A denoted
by A4, is defined by 4, = (-1)"/ M,

\H2 2 g - 3@ A5 4, iy
rerenmpe AT &l "l 4
4.4.2 Determinant 0f a Square Mairix of Order n =3
a4 G Gy
If A is a matrix of order 3, that is, 4=|a; @, a, |, then:
' @y @y ay
|A| = a4, +a,4,+a,4, fori=123
or (Al =a,4,ta,d, a4, for j=1,2,3
For example, for i=), j=1andj=2, we have
4| =a,, 4, +a,4, +a,4, Y
or | 4| = a4, +ay Ay +a8y, Ay (id)
or |A|= 2,4, + ap iy +an 4, (i)

(iii) can be written as: |A4|=a, (—1)"* M, + a,,(-1)** M, + &, (-1)** M,,




{iv)
Similarly (i) can be written as |4 = a,,M,, —a,M,, +a,M,, ®
Puiting the values of M,,,M,, and M, in (v), we obtain
" By G| By 8y @y 4p
‘A| = = Byy Gy By By i By By
Of |4 =a, (858, — Aylly) — @y, (0 y — 88y ) + 81y (a;10,, — 6,3, (vi)

OF |4 =8y, 8, + 8@, + 838y By — Oy BBy — Oy Gy By — 5y By {vii)
Equation (vii) is the required expansion of determinant of square matrix of order 3.

1 -2 3
[ETTTI 4] Evaluate the determinant if 4= -2 3 1
4 -3 2
1 2 3
SO, |4=1-2 3 1
4 -3 2
uslng |4 =a, My, —a, My, +a, M5 ,We get

03 1, 20 .2 3
[4=1"4 2‘ {2)‘.4 2*3‘4 3

=1[6-1(-HH+AC2)(2)- M (@)]+3[(-2)(-3)-12]
=(6+P+2A-4)+3(6-12) =9-16-18 =25

1 2 3
LR 5| Find the cofactors 4,,, A, and 4,of A=|-2 3 1 |andfind |4.
4 32
[ETTTTTY, We first find M, , M, and M, ,
2 1 1 3
Mu_“' 2“=_4_4=_a ,ME—L 2=2—12 =-—10
1 3
and MH=‘_2 l‘=1—(—6] =7

Thus A= GO M, = (C1)(8) =8 4y =(1""Mp=1(-10)=—10
A= (" Myuy=CIX7) =7

and ] = @,,4,; + @y dyy + Ay Ay, =(-2)8+ H-10)+(-3X-T)
= =16-3+21=-25
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4.43 Properties of Determinants

i.  For a square matrix A4, [4| =4

ii. If in & square matrix A, two Tows or two columns are interchanged, the
determinant of the resulting matrix is —|4|.

iii. 1fasquare matrix 4 has two identical rows or two identical columns, then |4|=0.

iv., Ifall the entrics of a row (or a column) of a square matrix A are zero, then |4 =0,

v. If the entries of a row (or a column) in a square matrix 4 are multiplied by a
number k€ R, then the determinant of the resulting matrix is kj4|,

vi. If each enitry of a row (or a column) of a square matrix consists of two terms,
then its determinant can be written as the sum of two determinants, 1.¢., if

-‘311"""11 Gy dy
B =|ag,+by; a, ay|,then
ay, +hy a4, a,

ay+h, @, &y |6y @y e, & @y a
Bl = |an+8y ay an|=|Gy Gy Gyt by a6, ay
Cuthy @n ) (ay 4y 4y |By % @y
vii. If any row {column) of a determinant is multiplied by a non-zero number k and
the result iz added to the corresponding entries of another row (cohumn), the
value of the determinant does notchange,
viii. Ifa matrix is in triangular form; then the valua of its determinant is the product
of the entries on ils main diagonal.
(ESTTY We hall define triangular matrioes o page 61. |
X a+x b+c
[ETTTTH 6| Without expansion, show that (x b+x c+a|=0
X c+x a+b
Aﬂdingthemtﬁmufﬂatoﬂlecmpnndingenhiesnfcz.
x a+db+e+x b+e
LHS=x a+b+c+x c+a
x d+b+ec+x a+b

1 Bwe (byl;akingxmnnmnﬁ‘omq ami)

- 11
x(a+b+c+x}1 y c:—-: (@ +b+c+x) commen from C,
a

= x{a+b+ec+x)-0 (- €' and €, are identical)
=0=R.HS




P

@, a, 613] A4y A, Au]

Let A=|ay a, a, |, thenthe matrixof co-factorsofd=|4, 4, 4,|,

@, Gy & Ay, Ay Ay
All ‘421 ASI
endadj 4= |4, 4, An]
A4, 4, 4,

Inverse of a Square Matrix of Order m 2 3: Let 4 be & non singular (4] # 0) square
matrix of order n. If there exists a matrix B such that AB = B4=I,, then B is called
the multiplicative inverse of 4 and is denoted by 47", It is obvious that the arder of
A7 mxn.
Thus, A4 =1 and A'4=1,
If A is non singular matrix then

41

A Madjd

H=1 1

1 0.2
FindA-lifA=[n 2 1].
Weﬁrutﬁndthégﬁfaclnmoftheelementaofd.

|2 —
4,=(1) 1 ¢ = (=1I}-1) =1

A”:(_I)M'[: -21‘=1'(°'2)=‘2- Ay = (-1

‘=1-f2+1}=3, A=)

0 2
iy 1‘=(—1)(0+2)=—2

1 2
1

1 0

— Ty
Ap={-1) i 4

‘="ﬂ—z)=—1. A= (—DH‘ ~HER

1
3-!-1“ 2
A= D) [ =1 0-0=-4, 4=

1 2
0 1‘ ={-1}1-0)=-1

e — A

=1:(2-0)=2

e T ]

Ay=(1y"
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(4, A, 4] [3 1 -2
Thus  [Ale=|4y 4n 4s|=|-2 -1 1
4 4, 4] |4 1 2

mamenates (100

3 -2 4
and adjd=[LL,=1 -1 -1 (- Ay =4, fori,j=1,2,3)
2 1 2
Singe 4] = a4 +apd; + a4,
= 13)+0(0) +2(-2)
= 3+0-d4=-1] >
3 3 4] [-8a@' 4
So A‘1=|—:!|ade=il 1 -1 —1]|=|-1"1 1
2 o xpl2 a2
V. EXERCISE 4.2
1. Evaluate the following determinant®;
1 -2 4 ath a-b a 2x x x
@ [3 -1 -3 @ a ath a-b i) |y 2y y
-2 3 2 : la-b a a+b z z 2z
2. Without nxpms.iqnsﬁuﬁi' that:
7 8 9 5 6 -1 -a 0 &
@ 5 6.7|=0 @@ 2 2 0|=0 ()0 a —¢=0
2-3°4 2 =8 10 ¢c b 0
I min 1 2 1 3 be a & | & &
Gv) m m+l 1|=0 (v) 2 3 9x|=0 (vi) ez b B*|=]1 ¥* ¥
n l+m 1 3 5 15x ah ¢ | 1 & ¢
3. Using properties of determinants, show that:
3 5 0 3140 a+x a4 a
@ |5 25 10=251 1 2 (i) | a a+x a |=x(a+x)
7 25 1 7 51 a a atx




)

(vi)

(vid)

(viii)

(ix)

(x)

(=)

(xid)

<#> Matbemtis

1 x 2§l |1 x ¥ 1 x X
1y z=1 y 3 ) 1y y|=E-yXry-2Xz—%)
1z 9 |1 z 2 1z 2

1 1 1

a+l B+l e+l |=(a-b)(b—c)(c—a)
(a+1)° (b+1) (e+1)
@+ c?

a B+ ot =4
b B +d

a b ¢
b+c c+a a+bl=a*+b +c—3abe
a+b b+ec c+a
a+t a a .

b b+t b |=f(a+b¥ec+s)

¢ c o+
a—-b—c 2a 24

25 b—c—a. ) 2b |=(atbie)
2c 2 c—-a—-b

y+z zt+x xty

oy 2 =t y+a)(x-y)y-2)(z—x)
2y 2
1 1 1

a+1 b¥+1 *+1 =(a—b)(b—c){c—a)(ab+bc+m—l)
a+a BP+b ’+c

1+a 1 1 1 a &k

1 1+& | |=abe+ab+be+ea (xiii) |1 b 5 —cai=0
1 1 1+e¢ 1 ¢ &—ab
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2x+3 x+2 x+a
(xiv) |2x+5 x+3 x+b=0 ,where2b=a+c
2x+7 xt+4 x+tc

a b c
(xv) ¢ a b=(a+b+c)(a+bm+’)(a+bm’+m;),whﬂ3misan
b ¢ a

imaginary cube root of unity.

1 2 -3 5 -2 5
4, IfA=|0 -5 0 |and B=|-3 -1 4|,then find:
-2 =2 7 -2 =1 2

() Agdgdgand |4 @D By By B, and |8
5.  Find the values of x ift
2 1 = 1 x-1"3 1

11
@ 1-4 3=5 (i |1 r¥l 2/=9 @) 2 x 2/=0
x 1 0 23 = 36 x
T 2 - 31
6. Find |Ad'| and |£4)if: @) .-_4*:[2 . 3] (i) 4=|2 2
O 1 3

7. 1fAis a square mahxaffrrder 3, then show that |k4|=&"|4|.
8. Find the values of Wif 4 and B are singular.

4 23] [2 45
4=|7 A°6|, B=|1 21
2\3 1 (2 2 0
P Ss
9. Findthemverseof 4=|—5 0 4 |and showthal A"4=1,
(5 40
10. Verify that (4BY = B'4'if

L 1 1 2

; 1 -1 2 . 1 =3
(1)A=|:U 3 1] and B=|-3 —-2| (i) 4=|1 4|and B=[ 5 1]
0 1 2 1
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4.6 Elementary Row Operations on a Matrix
Usually, a given system of linear equations is reduced to a simple equivalent system
by applying elementary operations which are stated as belaw:
(i) Interchanging two equations.
(ii) Multiplying an equation by a non-zero number.
(iii) Adding a multiple of one equation to another equation.
Corresponding to these three elementary operations, the following elementary row
operations are applied to matrices to obtein equivalent matrices:
(i) Interchanging two rows
(ii) Multiplying a row by a non-zerc number
(iii) Adding s multiple of one row to another row
Notations that are used to represent row operations for (i)
to (iil) are given below:
« Interchanging R and R, is expressedas R, & R,,
» Kktimes R,is denoted by AR, - R;.
= Adding ktimes R, to R, is expressed as K+ &R, — R/
(R is the new row obtained after applying the row operation).
For equivalent matrices 4 and B, Wewnte.d RB.
FARBthenB R A :
Upper Triangular Mairiz: A squire mairix 4=[a,]is called an upper inangular
matrix if all elements below the principal disgonal are zero, that is,
a,=0forall >
Lower Trianguler Matrix: A square matrix 4 =[a,]is said to be lower triangular
matrix if all elements above the principal disgonal are zero, that is,
Trinngular Matris: A square matrix 4 is named as triangular matrix whether it is
upper triangular or lower triangular. For example, the matrices

1 000
L2 3 3 200
0 1 4|and i i %0 are triangnliar matrices of order 3 and 4 respectively.
%88 -1 2 3 1

The first matrix is upper triangular while the
second i8 lower triangular,
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4.7 Echelon and Reduced Echelon Forms of Matrices

In any non-zero row of & matrix, the first non-zero entry is called the leading entry of

that row.

Echelon Form of a Matrix

An mx nmatrix 4 is called in echelon form if:

(i) The number of zeroa hefore the leading entry is greater than the number zeros in
the preceding row.

(ii) Every non-zerc row in 4 precedes every zero row (if any).

(iti) The first non-zero entry (or leading entry) in each row is 1.

01 -2 4 1 2 3 4 _
Thematrices [0 0 1 2|and (0 O 1 2| aminechelonform
00 0 0 00 0 1 '

Redunced Echelon Form of o Matriz: An mx nmatrix 4 is said to be in reduced
(mw)eche]onformﬁthﬂﬁrstnon—zemantry(orlmgenny)mRhnsm C,,then

all other entries of C, are zero.
0 10 4 1 2.-000]
The matrices |0 0 1 2 amd 0 .01 0 arein (row)reduced echelon form.,
0 00 00 0 1
2 —l 9
[ETTITI 8| Reduce [1 ~1-2 -3 |to (row) echelon and reduced (row) echelon
3 3 2
form.
2.3, -1 9 1 -1 2 -3

BT ML -1 2 3|, &2 3 -1 9| myRoR
31 3 2 31 3 2

1 -1 2 -3 11 2 -3

Bo 5 —5 15| WEACDRSE Rlg 1 g 3| Ly ,p
0 4 -3 11| WETORSE g 4 3 1) f

1 -1 2 3] 10 1 0

Bo 1 -1 3| R+r,—>8 B0 1 -1 3|gurnx
00 1 -1 00 1 -1




1
2 By R, +(-1)E; - R

1 end R, +1.R, 2 K,
-1 2 -3 100 1
1 -1 3|and |0 1 0 2 |are(row)echelon and reduced (row)
0 0 1 -1 001 4

echelon forms of the given matrix respectively.
Inverse of 8 Matrix: Let 4 be a non-gingular matrix. If the application of elementary
row operations on A:J in succession reduces A to 7, then the resulting matrix is 7547,

2 5 -1
(20119 Find the inverse of the matrix 4=|3 4 2
1 2.2
2 3 -1
4= 4 2|=2(-8—4)-5(—6-2)=1(6—4)=—24+40—2=40-26=14
1 2 -2
As |4z 0, 50 A is non-singular.
2 5 -1 1 0 0
Appending 7,0n the right of the matrix 4, wehave (3 4 2 i 0 1 0
2 2 :001

Interchanging &, and Bywe get,
12-=2:001] [1 =g
34 2. 501 0[8|0-28:01 3WAREIRSK
2 51" 100] [0 3 i _p | IRACDR K

b2
=
=
e

—
=

1 r

12 -2:06 0 10 6 :0 1 -2
Y 0

01 4: _1 By B, +(-1&, » &,
2 ard B +H{-2)E, >

03 'F 1

3
2
—2 . 1 7
807 § S el
L 2 2 |
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106 0 1 -—=2|[100 _g;_ 1
01 4:0 —L 3 (Blo, .4 _3 _1BVE+CORK
4 7 T14 2|md R+dR R,
LI T 1 1 1
60 1T i = 2 b 11 1
: 7 1w 2] 1" 7 @ 2
54
7 7
Thus, the inverse of 4 is R
7 14 2
1 1 1
7 14 2]

Rank of g Mafriz: Let 4 be a non-zero matrix. H‘ristlmnnmbernfmn-zarom's
whmﬂmradumdmﬂmachelonﬁarm,ihenrlscaﬂﬂdlhermkoﬂhcmd

142 =
(25040310 Find the rank of the matrix [2 - 0 7 -7
31 12 -1
11 2 37 1 D2 3
- 2
SR |2 0 7 - ﬂuza_lz‘“‘;“"“;
3 1 12 -11 ¥ 4 6 - [=IRHBR-K
-1 2 —3»_ 1 -1 2 -3
R 3 3 ]
=0 1 » BY Rﬁ—"ﬂ 0 1 5 =% By R +(-49)R, >R
0,46 2 000 0

Asthennﬂ:ﬁ#r'ufnon—zmmwsisiwhmﬂ:egivenmﬁxismdncedwechﬂm
form, therefore, the rank of the given matrix is 2.

4.8 System of Non-Homogeneous Linear Equations
Three lingar equations in three varigbles such as:
ax+bytcz =d,
axthytez =d, )
ax+hy+eoz =d,
is called a gystem of non-homogeneous linear equations in the three variables x, y and
z, if constant terms ), 4, and &, are not all zero.
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Consistent: A system of linear equations in said to be consistent if the system has a
unigue golition or it has infinitely many solutions,
Inconslstent: A system of linear equations is said to be inconsistent if the system has
1o solution.
Now we will solve the system of non-homogeneous linear equations with the help of
the following methods:

(i) Using reduced echelon form

(ii) Using matrix inversion method

(iit) Using Cramer's rule
4.8.1 Reduced Echelon Form

There are following steps fo solve a system of nnn-homogmeuun linear equations (i):
(i) Convert to sugmented matrix
@ b ¢ |d
ie. a b c|d,
a b ¢ |d
(ii) Convert to reduced echelon form
(ili) Solve by back substitution

Solve the following and explain a consistent and inconsistent system:
) Z2Zx+5y-z=5 {ii) x+y+2z=1 (i) =x—-y+2z=1

Ix+dy+2z=11 2x—y+7z=11 2x—6y+5z=T
x+2y-2z=-3 o 3x+5y+4z=-3 3x+5y+4z=-3
25 -1: 5
EINTTION (i)  The augmented matrix of the given systemis (3 4 2 : 11
12 -2: 3

We apply the elementary row operations to the above matrix to reduce it to the
equivalent reduced (row) echelon form, that is,
2 5 1: 5 1 2 -2 : 3
34 2 ! 11| K3 4 2 ! 11| ByReR
1 2 -2 ! 3 25 -1: 5
1 2 2% -3 1 2 -2 : -3

R0 -2 8 i 20 | ByR+(-3R >R R|0 -2 8 i 20|Byn+(2r &
2 5 11 5 01 3 i 11
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1
2
1 2 =2 -3 1 6 : 17 .
g0 1 =4 -10[&l0 1 -4 i -10 2::?:?;2::
01 3 :1|loo 7 A -
1o 6] LN P
RO 1 4 0By _R>E RO 102 ST
00 1 i 3| 00 1: 3 N T

T]:I;J.S, the solution is x=-1Ly=2adz=3, therefore the given system of linear
equations has unique golution and it is consistent,

1 1 v 1
(ii) The angmentcd matrix of the given systemis (2 =1 7 : 11
305 4 : =3

1§ 8§ ATE L &8 i
2 -17 i (R0 -3 3 i 9 |Adding (-2, toR, md (IR, to R,

3 53 4: 3 0 2 -2 : 6

112 %1 10 3% 4
i . _Lp - +H-DR, 5 8
Weget, R0 1 1: 3| By—sR—R Rl01-1:-3| B&
3 -
0226 000 ;0| ™MEHCARSK
The piven system is reduced fo equivalent system
x+3z2574
P=z=-3
0z=0

The equation Qz= 0is satisfied by any value of z.
From the first and second equations, we get
x=-3z+4 {g)

and y=z-3
As 2z is arbitrary, 50 we can find infinitely many values of x and y from equations (&)
and (b) or the given system, i8 satisfied by x=4-3¢, y=1-3 and z=1 for any real
value of £.
Thus, the given system has infinitely many solutions and it is consistent.

1 -1 2 ;1
(iii) Thcm@nmtedmau'ixufﬂluystemis[z -6 5 : 7]
31 5 4: -3




mamenates (100

2—65; 7 &0 -4 1 5 | Adding (-2)R, to R, end (-3R) to R, .
3 5 4:-3| [0 8 2: -6

4 and R, +(-8)R,—> B}

4
4

£lo 1 —%E—E By-%n,_;.g, 501—15-% By R+ LR,—R
08 2: -6 00 O 4

Thus, the given system is reduced to the équivalent systen;

e+ 7oL
4 4

jubg 8
4 4
0z=4

The third equation 0z= 4has no solution, yo the system as a whole has no solution.
Thus, the system is inconsistent.
memthltmlh:meofﬂaﬁmﬁnﬁ).thn(mw}mkufﬁnnngmmtudu-m:mdﬂm
meﬂmtmﬂmathme%mmswhmhmquumﬂnmufmemmﬂm
the systen (i

Thus,w:t(ﬂ:::m:ﬂ:mtnhw :m'is. consistent gnd has » wnique eolytion if the rank of the
nudﬂmmimnm:nﬂmmqjﬁpt the augmented matrix of the svatem and equal to mumber of
‘varigbles.

In the case of the system. hmdmmmmmmumawmm
matrix of the system but it is 2 which ia less than the mumber of varisbles in the system (ii).

Thus, we obsarva | nqmumﬂﬂmdhumﬂnﬂynmywhhnmﬂhmhofm
ooefficient mairix and the engmemnted matrix of the system ere equal but the renk is leas than the number
ufvmahleuq..&lﬂlyﬁtﬂn_
hﬂwcuch’éﬁbcuym(ui].w:mﬂmﬂl:mnkufﬂmm:ﬂinﬂmmmmtoqnalhﬂumknf
the supmentad matrix of the system,

Thus, we obsarve that a sysiem i inconsistent if the vanks of the coafficient matrix and the sugmentad
| mairix of the system &re different. ;

4.8.2 Matrix Inversion Method
The matrix inversion method is a way to solve a systemn of linear equations using the
inverse of a matrix.

X2 +x =4
LA 12| Use matrix inversion method to solve the system 2x, —3x,+2x,=—6

2y +2x+x =5




Thﬂmnh'ixfnnnufﬂlegivenaystemin
1 -2 1][x] [
2 3 2||x|=[-6
2 2 1llx 5

ar AX=38 @
1 21 x it
Where A=|2 -3 2|, X=(x, |and B=| -6
% 2 1 % 5
1 =21 1 =21
As ‘A|=2 -3 21=0 1 0 ByR+-2DR=E
2 21 2 2 1
Expanding by R, we have .
11
=(—l}lz"“22 1‘=1—2=—1,ﬂm‘tis,

| 4| 0, so the inverse of A exists and (i).can be written as

X=4"B (ii)
Now we find adj A.
~7_ 210
> [4l.-[4% |
-1 0 1

NA =74, 22,4, 10,4, =4
CORCITES, dy =) Ay =64y = 1,4, = 0,4, =1

i,
So adj A=|2 -1 0
100 6 1
-7 4 -11[7 —4 1
| 1

and A“:madj,{=—lz -1 0l=|—2 1 0
10 6 1| |-10 6 -1
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EN —4 7 —4 1][—41 [-28+24+5
Thoe| %, =47 6|=|-2 1 0Of|-6|=| 8-6+0 |, ie,
£ 5 -1 6 -1|| 5 40-36-5

21 [

x (=] 2

5] |-
Thus, the sohition set is {(Ip Koy 13)} ={(1,2,-1)}
4.8.3 Cramer’s Rule
Consider the system of equations,

By + 8%y + A% =B, @)
00y, + diyy Xy + %, = by
These are three linear equations in three variﬁblasxl.x,,x!ﬂdﬂl coefficients and

constant terms in the real field R. We wiite the above systern of equations in matrix
form as:

qla+%+auxs=bl]

AX =51 (i

[ B

where A=[a)pi X=|x, | and B=|p,
%, b

We know that the atrix equation (if) can be written as: X=4"'8 (il 4 exisis)

We have alesatly proved that 4™ =1 adj 4

|4
A4, 4, 4,
and adj A=[L =4, A, 4, (- 4y=4,)
A, A, Ay
X { 4, 4, 4|4 1 A+ Ayb, + 45
Thus | x, =M 4, Ay Az || B, =M AB + Aphy + Aghy
% Ay, Ay Ay || b A + Apb, + Ayh,




O S—r,

'Aub.+A‘nl|a+A,lb,'
A
x
s [%]= 4:51+‘4&E|5+‘4u53
B | Ah Ak A
4]
b a, a,
b, &y ay
_ b4 A b, B 4y ay
e N £
&, B @,
@y b ay
_b4,+b 4, +b4y (o b s
. 4 N o~
ayy a, b
ay @y b
_bA,+b 4, b4 |6 ay b
Xy A| |4 )

The method of solving the system with the help of results (iii), (iv) and (v) is often
referred to ag Cramer’s Rule.

I +x-x=—4
ETra13| Use Cramer’s rule to solve the system, x,+x,—2.::5=—4}
- % +25-x%=1
3 1 -1
O Here|d|=|1 1 -2|=3(-1+4)—1-(-1-2)-1-(2+1)
-1 2 -1
=943-3=9
-4 1 -1
-4 1 2
- ;'! -1 =-4(—1+4)-1(e;+2)—1(-s—1)
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_12-6+9_-9_ .
9 9
3 4 1
1 -4 -2
-1 1 -1 3(4+2)+4(-1-2)-1(1-4)
BT T 9
=18—12+3=2=]
9 9
31 4
1 1 4 !
x3=—1 2 1 =3(1+a)-1(1—4)-:|{z+1)=2'.*+:-3';1'2=§=2
9

9 9 9
Henoe x=-Lx,=1x=2 '
Thus, the solution set ia {(x,, x,, )} = {(-1, 1, 2)}
4.9 System of Homogeneous Linear Equations
The system of following homogeneons lineat equations:

&% + &%+ ax, =0

oy + 8y, + 0,7, =0 ®

%, + 2y, +ay k=0
is always satinfied by x; .=._Q.,:-:'2 =0 and x, = 0, so such a system is always consistent.
Trivial Solution: The golution (0, 0, 0) of the above homogeneous system iz called
Nen-Triviel Splution: Any other sohution of system (i) other than the trivial solution
is called a nion-trivial solution,
4.9.1 Sclution of System of Homogeneous Linear Equnations by

Gausgian Elimination Method

Gaussian Elimination is a systematic method for solving systems of linear equations,
named after the German mathematician Carl Friedrich Gauss, It involves performing
a series of row operations on the systemn's augmented matrix to transform it into row-
echelon form. Once the matrix is in this gimplified form, the solution to the system
can be determined through back substitution. This method is widely used due to its
efficiency and clarity in solving linear systems.
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Selve the following system of equations by Gaussian Elimination

mﬂhod.
xt+2y+tz=0
2x+ 3p+ 4z=0
4r+ 3p+ 22=0
Thﬂaugme:ntedmah'his
1 2 1|0]
4=23 4|0
43 2|0
1 2 1|0 |
Elo -1 2|0|ByR,+(-DR > R.endR, +(<4)R > R!
0 -5 -2|0 _
1 2 10
= Blo 1 -2|0(By-DR, >R,
0 -5 2|0 '
1 2 1|0
= &0 1 -2|0|8yR,+5R, >R
_ﬂ 0 -12|0
1 2 1[9])
= &lo 1 =2/0 [ ]F,—)R' (Rank of 4 = 3 = number of variables)
0 00 1|0
The mairix 18 it row-echelon form.

By back-substitution, from the third row, z= 0.
From the second row: y—2z=0
¥—2(0)=0
y=0
From the first row, x + 2y + z =0, substituting y = 0 and x = 0, we have
x+2(00+0=0
x=0
Thus, the system has only trivial solution, i.e., (x, », z) = (0, 0, 0).
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Solve the following system of equations using Gaussian Elimination
Meﬂmd

5+ X+ X% =0
X— X%+3x%5 =0
% +35-x =0
Theargummtedmah‘h;is
1 1 1|0
4,=/1 -1 3|0
1 3 -1j0
1 1 1|0
Rlo -2  2|0| ByR,+(-DR - R, and B +(-1)R SR,
0 2 -2/0
1 1 1[0]
= £lo 1 -10 By[—l)&—bﬂ‘;
0 2 -2|0] 2 ,
1 1 1/|0]
= #®|0 1 -1/0| ByR+(-2)R, >E (Rank of 4 <number of variables)
0 0 0|0

The matrix i8 in row-echelon form
Thug, the above system is reduced to the equivalent system of equations

X txyte, =0 M
X—% =0 (i)
Ox, =0
From (i) ami(u),we get
=%-x, (i)
"'-z =%
Substituting ¥, ==, in (jii), we get
R
= X =-ix (iv)

As x, is arbitrary, so we can find infinitely many values of x; and x, from (jii) and (iv)
or the system is satisfied by x, =-2¢, x, = ¢ and x; = for any value of ¢.




From above examples we observe that:
Rule — I: Homegeneous system of linear equation has only trivial solution if
rank of 4 = number of variables.

Rule — IT: Homogensoug system of linear equation has non-trivial sohution if
rank of 4 < number of variables.

4.10 Applications of Matrices in Real World
Matrices play a crucial role in solving real-world problems across various fields, In
graphic design, they help manipulate images through transformations like scaling,
rotation, and reflection. Dats encryption and cryptogtaphy use mattices for secure
commmicetion by encoding and decoding messages. In seismic. analysis, engineers
usc matrices to model and predict earthquake wave hehavior. Geometric
transformations, such as translation and dilation, rely unma&imtomodifyshapmin
computer graphice. Additionally, social network emalysis leverages matrices to
represent and analyze relationships between individuals, identifying key influencers
and connections in a network,
Transformation or Reflectlon Matrix is 4 mathematical tool that represents the
reflection of & point or object across a mimor line in 8 coordinate plane. [t’s 8 matrix
representation of a reflection transformation. In two dimensions, this typically means
reflecting across the x-axis, y-axis or g line such ag y=x.

o
0 -

1 g
‘- 0 l-

To reflect & matrix over the x-axis, we have to multiply it by

To reflect a matrix over the y-axis, we have to multiply it by

01
To reflect & mitrix over the line y = x, we have to multiply it by [1 D]

A triangle has the vertices A4(2, 3), B(-1, 4) and (3, —2), Find the
vertices of the reflected triangle over the x-axis by using transformation matrix.
EZITTTT, To reflect a point across a certain axis or line, we have multiply the point
a8 a column vector by the corresponding transformation matvix,

Here, to reflect the given points over the x-axis, we use the transformation matrix

B




Write Ihe points as column matrices

BT

s ot L35 {2

0 -11|3 0-3 3

e,

e veme(, ]2} S 0

Thus, the vertices of the reflected triangle are 4°(2, -3), B'(=1, ~4) and C'(3, 2).
Coding is the process of converting a message into a specific format using a cods, A
code i8 a system of symbols, words or signals used-to represent other words or
meanings. It's often used to hide the actual meaning of'a message.

To decode a message, we multiply coded matrix by the inverse of the given matrix.

1 2
(BST 17| Use mairix 4 = [ ]tn encode the message: ATTACK, where

3 1
letters A to Z are corresponding to the numbers 1 to 26.
Solution Y56
A B C D E E G H i | J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N ] P Q R 5 T u v W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Divide the letters of the message into groups of two.
AT TA CK
Asgign the numbers to these letters and convert each pair of numbers into 2 x 1

o4 A1 - BT G-

: . .| 1]120(]3
So, the message in 2 x lmatncesm[m] [1] [11]

Now to encode, we multiply, on the left, each matrix of our message by the matrix 4.

NN




[20 + 2] [22
|60 + 17|61
_[3 + 22] [25]
|9 o+ 11] |[20]

S F

23||61]]| 20
PV EXERCISE 43 _d
1. Find the inverses of the following matrices by using row operations:
7 6 43 1 2 i 1 6.9]
® |0 -2 0 G |0 -2 8| () j213 0
2 5 6 10 2 _ [o-11
2. Find the mnk of the following matrices: |, \ X
1 13 1 1 —23 3 -1 3 0 1
N R Y
3 1 4 -2 e
+0 1 -1 2 5§ 2 -3 13
3. Solve the following systens ut."lginear equations by Cramer’s rule:
x+y-z=1| X +2x,—3x,=0 2% —x,+x=1
@ *-y+22=3) @) An-m+n=5p @) 5+2%+25=2
3x+2y+z=4% 2% +3%,+2x,=3 x—2x,—x%=1
4. Solve the fpl]&iving systems of linear equstions by matrix inversion method:
¥=2y+z=—1 2% +x,+3x,=3 xty=2
(i) 3x+y-2z=4 (i) x+3x,—2x,=0; (iii) 2x-z=1
y-z=1 —3x—x,+2n=4 2y-3z=-1

5. Solve the following systems by reducing their sugmented matrices to the
echelon form and the reduced echelon forms:
*+2x—2x,=-1 +2y+z=2 X +4x,+x,=2
) 2x+3x+x,=1 ; G) 2x+p+2z=3 (iii) Zx +x,—2x,=9
5% +4x,-3x5 =1 2x+3y—z=7 3Ig+x—x,=12




10.

11.

Solve the following systemns of hnmogmeou.u linear equations by using
Gaussien elimination method:

x+4y-2z=0 x+4x,+2x,=0 x+2x,-x=0
O 2x+y+3z=0; G) 2g+x-3x=0p (i) x-x+55=0
5x+2y+8z=0 3 +2x,—4x,=0 2x,+x,+4x, =0

A triangle has vertices at 4(4,1), #(-2,5) and C{0.—3). Find the vertices of the
reflected triengle over the y-axis using 8 transformation matrix.

ﬁS 0 0
The point 4 is mapped to (30, 20, S)bylhescaﬁngmam;{) —5 0 \
I\
Find the coordinates of A. /&Q‘
[Hint: If A4 is mapped to A’ by scaling matrix P, then PA = 4"]

Findthsequaﬁonuftheimageofﬂmqg:v%nhequaﬁuny=fmﬂurlhe

L™ L

transformation with associated ma.lrbp[r 2]

G
10 1«Q

Uss the matrix A = [2 -1 1#tr:.t:um.:nclei:lmn:muﬁ:igf;-.KEEI’I']”[.TF where
nd(\z
lﬂttm.r!toz-'m g to the oumbers 1 to 26.

Q‘@'n 25722
Decndsthc‘u@nage 20|10 || 14 | that was encoded using matrix

%b 43| a1]| &1
™

A=|1 0 1|, where the numbers 1 to 26 are comesponding to the lstters
2 I 1

Ato Z, and 27 is representing space or =",




Partial Fractions

INTRODUCTION

We have learnt in the previous classes how to add two or more mational fractions into a
single rational fraction. For example,
. 1 2 3x
= =
O L g
2 1 3 5x*+5x-3
+ =+ =
s+l H)Y x—-2 (x+DA{x-2)
In this unit we shall learn how fo reverse the order (i} and (ii) that is to express a
single rational fraction as a sum of two or more gingle rational fractions which are
called Partial Fractions. \

Expressing a rational fraction as a sum ot‘-partial"fmctions i8 called Partial Fraction
Resolation. It is an extremely valuable tool in the study of calculus to decompose a
complex rational fraction into a sum of simpler fractions.

An open sentence formed by using the sign of equality ‘=" is called an equation. The
equations can be divided into the following two kinds:

Conditional equation: Itis an equation in which two algebraic expressions are equal
for particular values of the variable e.g.,

(8) 2Zx=3isaconditional equation and it is true only

PN,
equation is called an equation.

(b) x*+x—6=0is & conditional equation and it is
true forx=2, -3 only.

Identity: It is an equation which holds good for all values of the varisble e.g.,

(a) (@a+b)x= ax+bx is an identity and its two sides are equal for all values of x.

(b)  (x+3Xx+4)=x"+Tx+12is also an identity which is true for all values of x.
For convenienge, the symbol “=" ghall be used both for equation and identity.

and  (ii)
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5.1 Rational Fraction

An expression of the form Z((xi where P{x} and O(x) are polynomials in x with real

coefficients and (Xx) # 0, is called a rational fraction. A rationzl fraction iz of two
types.

5.1.1 Proper Rational Fraction

A rational fraction }Q_,[% is called a Proper Rational Fractien if the degree of the
polynomial P{x) in the numerator is less than the degree of the polynmnl {Ax) in the

denominator, For example, R T 93':3 are proper rational fractions or
x+1 X+4  x-1

proper fractions.
5.1.2 Improper Rational Fraction
Amﬁona]ﬂ‘acﬁun% is called an Improper Rational Fraction if the degree of the
polynomigl P(x) in the numerator is equal to or greater than the degree of the
polynomial O{x) in the denominator.

x  (x—2x+D -3 an!,.1.:|:1'—;:|:1+;\:+l
2x—3 (x=1)(z+4) 3xr+1 #+5
are improper rational fractions or improper fractions,
Any improper rational fraction can be reduced by division to a mixed form, consisting
of the sum of a polynomial and a proper rational fraction.

For exemple,

Fnraxample, 311+ is an improper rational fraction.
=2 3x+6
-2132 +1
By long divigion we obtain H;l—h+6+% that is % o
&= < +3x% F6x
improper rational fraction 35 +1 has been reduced to the sum 6x+1

ufapulynomml3x+6andapmperrnt1malﬁachanx 7- 0%

When a rational fraction is separated into partial fractions, the result is an identity;
i.g., it is true for all values of the variable in the domain of the identity.
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The evaluatmn of the coefficients of the partial fractions is based on the following
theorem:
“Jf two polynomials are equal for all values of the variable, then the
polynomials have same degree and the coefficients of like powers of the
variable in both the polynomials must be equal”.

For example,

If px* +q —me+b=2x"—3x" —4x+5, Yxthenp=2,g=3,a=4and b=5.

5.1.3 Resolution of a2 Rational Fraction £ :t; into Partial Fraetions

X
Following ate the main poinis of resolving a ratiomal ﬁ‘acﬂnnzix;mm partial
X

Tractions:

(i) The degree of P(x) must be less than that of Ofx). If not, divide and work with
the remainder theorem. :

(ii) Factorize the denominator O(x) into its irreducible factors, ‘write the rational
fraction into partial fractions.

(iii) Multiply the identity with the defipminator of left hand gide,

(iv)  Equate the coefficients of like terms (powers of x).

(v)  Solve the resulting equations for the coefficients.

We now discuss the following cages of partial fractions resolution.

Case I: Resolution of %lﬂtﬂ pietial feaeibim Wi 006l oily o

x

repeated linear fapfun:

The polynomial O(x) may be written as:
Ox)=x—a)(x—ay) ... (x—a), where g 2a,=....#4,
PX_ A4, A v B s anidentity.
Qx) x-4 x-a, x—a,

Where Ay, 43, ..., 4y are numbers to be found.

The method is explained by the following examples:

Tx+25 r—— :
1] Resolve————— D into partial fractions.

75425 A B
L Sy
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Multiplyin both sides by (z -+ 3) (e -+4), we get

Tx+25 = A(x+4)+B(x+3)
= Tx+25 = Ax+44+Bx+38
= Tx+25 = (A+Bnx+44+3B

this is an identity in x.

So, equating the coefficienis of like powers of x we have
T=A+B and 25=44+38

Solving these equations, we get 4=4 and B=3.

Hence the partial fractions are: i+i.
r+3 x+4
Alternative method
Suppode Tx+25 _ A % B_
(x+3¥x+4) x+3 x+4
= Tx+25 =A(x+4)+B{x+3)

As two sides of the identity are equal for all valucs of x,
Letusputx=-3 and x=-4init
For 4, putting x + 3 =0 i.e.,, x =3, weget
—21+25=4(-3+4)
= A=4
For B, putting x + 4 =0 i.e.,x =4, we get
—28+25=8(-4+3)
= B=3
Hence the partial fractions are: i+i
\ x+3 x+4
x —10x+13
B (x-1Kx* —5x+6)
EIFTT0N, The polynomial x* — 5x + 6 in the denominator can be factorized end its
faclors arex— 3and x— 2.
¥-10x+13 _  x*-10x+13
(x-Dx*—5x+6) (x—D{x—2Xx—3)
x —10x+13 4 B C
ose = - +
(x-Dx—-2)(x-3) x-1 x—-2 x-3

into partial fractions.

Supp
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= -1+ 13=4(x—-2DEx-3)+Blx— 1}x—- )+ Cx—1}x—2)
which ig an identity in x.
For A, puttingx —1=01¢e,3=1, we get
(IP-1D)+13 =4(1-2)(1 -+ B(1—-1X1-3)+C(1 - 1}1-2)
=5 1-10+13 =A(-1) (-2) + B(0) (— 2) + C(0) (1)
4 =24
oA A=2
For B, putting x -2 =018, x =2, we get
(2P - 10(2) + 13 =A(0) (2-3)+ B2 —1) (2-3)+E(2 - 1) (0)
= 4—-20+13 =B(1) (1) y 1
= -3=-5
B=3
For C, puiting x -3 =01ie,x=3, wa get
Br-103)+13=4A3-2) O +B3-1D)O)+CB-1)(3-2)

= 9—30+ 13= C2)(1)
= _§=2(
C=4

£-10x+13 -2 3 4

Hence, == —+
x-D(x*-5x+6 x-1 x-2 x-3
(Y 204 —x—3 . ) )

R._ﬂmlve 2 3% 1) into partial fractions.

22X +x’—x-3 , . . i
22— is an improper fraction go, first transform it into mixed
form.
Denominator = #(2x +3)(x — 1) =22 + 2 - Az i
. Dividing 2" +x*—x—3 by 2 +x*- 3, 2f+f—3x)2f+f—x—3
we have Y= = o

Quotient=1 and Remainder = 2x—3 25—3
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2 +x -x—3 _ 14 2%-3

(25 +3)x—1) 22x+3)(x—1)

2%-3 _4 B  C

Suppose RG] x 243 21
= 2x—3 = A2x+Dx- 1D +B(x) (x— 1} + Cx) (2x + 3)
which is an identity in .

For 4, putting x = 0 in the identity, we get 4=1

For B, putting 2x+3 =0 =>x——% in the identity, we get B=—

‘uu

For €, putting x — 1 =0 = x =1 in the identity, we get E’E%

2x’+x’—x—3=1+l_ B 1

x(2x+3)x-1) x 5(2x+3) 5(x~1)

Cage TI: When O(x) has repeated linear factors:

If the polynomial (X(x) has a repeated lincar factors (x — @), » 2 2 and » is a positive

integer, then QE-"; may be written as the following identity:

ence,

PO)_ A 4 A
Olx)y (x—n} (x— a) (x—a)*
where 4, 4,, ..., 4, are numbers to be found.

The method is explained by the following examples:
anlvcf+x A siuko partial fractions,

(x+2)
F4+x—1 A B C
| P G+ x+2 @t2P Gt
= 4x-1=Ax+2P+Bx+2)+C (i)
= X+x-1=A@+4x+4)+Bx+2)+C (ii)

For C, putting x + 2 =0, Le., x=-2 in (i), we get
(—2)% + (—=2) — 1= A(0) + B(0) + C
= 1=€
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Equating the coefficients of x* and x in (ii), we get 4=1
and 1=44+B

= 1=4+8B = B=-3

X+x-1_ 1 3 1
Hence, 3 1 g+ 3

(x+2) x+2 (x+2)Y (x+2)

1

Resolve ——————— into partial fractions.
[RTT 5 | Resolve G PGE D) Into parti ons

ooy Here denominator = (x + 17 (* — 1)

Solution

=@+I1PE+1])E-1) = x+ 1P {x=1)
1 .

1 _
x+D (-1 (x+1)(x-1

Suppose : - + = + G + 2
PO G+ 21 x+l A lP @I
=  1=A@+1P+BacH) (x— 1) +Ce— 1)x+ 1)+ Dx- 1) (i)

= 1=A@E+32+3x+1)+BE +af—x— IO - 1)+ D(x—1)
= 1=(A+B’+(@4A+B+O¥(34-B+Dx+(4-B-C-D) (i)
For A, puttingx—1=0 = x=1 in (i), we get
oA
1=4Q¢ = A=%
For D, puttingx + 1 =0 = x=—1 in (i), we get
1
1=D(1-1) = D=-
Equating the ¢oefficients of x* and =* in (i), we get

3 1 1
and 0=34+8+C = 0=_——-1+C = O=—7
8 8 4
Henge the partial fractions are:
[ R R
8 , B, 4 . 2 : 1 : 1

1 xtl GrP Gt 8(x-1) 8xtD) A+l 2at1)
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P EXERCISE 5.1

Resolve the following into partial fractions:
. 3 . a-b g . aH
S “ Geae-b @b Gide-D
- 2x+3 i £ +4x+5 p 4%’ +5x*-3x-2
U e+ )x+2D(x+3)  (+ 12 +5x+6) : -1

3x° -12x+11 i (x—1)(x—2Xx-3) 9 P
D x-DE-2)x-3)  (x—4¥x—5){x—6) @ +a)E +h)(F +c)
o, X+1 11 XHx " 3% +4x—5
-1 (P -1) a1

1 47 —3x+1 _ 12x% —48
. x(x+1)° H'(x+1)(x—l)’ - (x—2)*(x+2)*

Cage ITI: When {(x) contsins non-repeated frreducible quadratic factors
Definition: A quadratic factor is irreducible if it cannot be written ag the product of
two linear factors with real coefficients. For example, x* + x + 1 and 2% + 3 are
irreducible quadratic factors.

If the polynomial O(x) contains non-repeated irreducible quadratic factors then %
may be written as the identity having partizl fractions of the form:
Ax+ B
ax’ +hx+e
The method is explained by the following examples:
X 3x-11 7 :
E le —_— .
Bre i 6 Resolve E— into partial fractions
3x-11 _dx+B C
Solution Lol e ey e Ry
= 3x—11=(dx+B) x+3)+Cu2+1) M
= 3x-1l=(4+C2+(B4+Bx+(3B+C) (ii)
ForC,puttimgx+3=0 = x=-3 in (i), we get
-9-11=C(9+1) = C=-2

where 4 and B are the numbers to be found.
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Equating the coefficients of x* and x in (ii), we get
0=4+C = A=-C = 4=2

and 3=34+F8= B=3-34 =5 B=3-6=> B=-3
. 3x-11 _2x-3 2

E+D(x+3) x+1 x+3

[T Resolve 2% 2% iy partial frmctons.

ETENTR, Here, denomingtor = x* + 227 + 9 = (¥ + 25+ 3) (" — 2x +3)
4% +8x _ 4x% +Bx

P +22+9 (37 +2x+3Kx* —2x+3)

45" + 8x _ 4x+B  C4D
(4224 3)x*-2x+3) F*+2x+3 x*-2x+43
= 4P+ 8r=(dx+B) (¥ - 2x+3)+ (Cx+D) (@ +2x +3)
= 42+ =1A+0O)P+(-24+B+2C+ D)2

+(34-28+3C+2D)x+3B+3D ()

Hene

Suppose

which i8 an identity in x.

Equating the coefficients of &°, %, x, #° in (i), we have
0=4+C (ii)
4=-24+B+2C+D (iii)
8=34-2B+3C+2D (iv)
0=3B+3D ")

Solving (if), (iii), (iv) and (v), we get
A=1, B=2, C=-1 and D=-2
e, ' +8c _  x+2 I
' +2x 49 P +2x+3 x'-2x+3
Cage IV: When (X(x) has repeated irreducible quadratic factory
If the polynomial ({x) contains a repeated irreducible quadratic factors (ax® + bx + &)",
n 72 and n is @ positive integer, then % may be written as the followitig identity:
X
P(x) _ Ax+B_ _ Ax+B, . Ax+B,
O(x) af+bx+c (@ +bx+cf = (ar +bx+c)
where A1, B, A2, By, ..., Ay, By are numbers to be found. The method is explained
through the following example:

Heng




<> a1
Resolvo 12— f;)’; oo prtal Fractions.
ax* _Ax+B Cx+D @ E
(F+1P(x-1) F+1 P+ x-1
= 4 = (x+ B+ D{x - 1) +(Cx + DYx— 1)+ E(* + 1) (i)
= A= U+E X+ (A+ B P+ (A-B+(+2E) 7
+(—4+B-C+D)yx+(-B-D+E) (ii).
For E,putingx—1=0 =>x=1 in(i), we get l
A=F(1+1y = E=1
Equating the coefficients of x*, x°, 2, x, in (ii), we get
G=A+E = A=-E = A=-1
0=—A+B = B=A =.>.}5‘='-1
4=A-B+CH+2E QO
=1 C=4-A+B-2E=4+1-122"> (C=2
and 0=-A+B-C+D
= D=A-B+C=-1+1%2=2 = D=2

Solution'W ¥

Hence. 4x’ = —'x'—l'+ 2x+2 | 1
: (x‘+1)“(x—;_)-, S+ (P a1
| P EXERCISE 5.2 _{
Resolve imq portial fractions:
I 25 +3%+3 5 2x+1 . 2x+32
 Z+DEE D  (x—2)x* +3x+5) T (=P +2)
4 3F+3 = x* 6x* +40x°

i > el AN Z + 47




Sequences and Series

INTRODUCTION

In this unit, gtudents will leam fo analyze and solve problems mvolving arithmetic,
geometric, and harmonic sequences and serieg, including their real-world applications.
Students will identify various sequence types, compute finite and infinite sums, and
utilize sigma notation. Additionally, they will explote practical scenario$ such ag motor
vehicle leasing, investment planning, end financial cslculations, This unit also
emphasizes applying these concepts to diverse fields, including healthcare, finance,
and traffic modeling. Finally, smdents will be able to solve both theoretical and real-
life problems using sequences and series effectively.

Let us observe the following pattern of numbers:

@ 511,17,23, ... (i) 6,12, 24, 48, ...
- 2 4 16

iii) 4,2,0,-2,—4, ... V) —»—1—s—sm

ke ST

In example (i), every number (except 5) ig formed by adding 6 to the previous numbers,

Hence a specific pattern is followed in the arrangemeni of these numbers. Similardy, in

example (ii), every mumber is obtained by multiplying the previous mumber by 2,

Similar cases are followed in example (jii) and (iv), When a set of numbers follows a

pattern and there is a clear rule for finding next number in the pattern, then we have

sequence as in above examples.

6.1 Seguence

A sequence is a funetion whose domain is the set N of sll natural numbers, whereas the

range may be any subset of real numbers or complex numbers. The numbers in &

sequence ang called its terma. We denote the first term of a sequence as a,, second term

asazandnuon.']fhen“‘tam]ufasaquenceiﬂ denoted by g, , which may also be referred

to as the general term of the sequence, and the terms immediately preceding it are called

the (n — 1)™ term, the (7 —2)™ term and 80 on.

6.1.1 Finite and Infinite Sequences

1. A sequence which consists of a fmite number of terms is called a finite sequence.
For example, 2, 5, 8, 11, 14, 17, 20, 23 is a finite sequence of 8 terms.

2. A sequence which consists of an infinite number of terms is called an infinite
sequence. For example, 3, 10, 17, 24, ... is an infinite sequence, or more gencrally
as3,10,17,24, ..., Tn— 4, ... to show how each term was generated.
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If 2 sequence is given, then we can find its #® term and if the #™ term of a sequence is given |
then we can find the terms of the sequence.

Find the first four terms ufthsfoﬂowﬁngsequanneswhnsen“‘Mm

given;

() @a=3n+1 () a=3n"-3

TG av=3n+1

Substituting n = 1, 2, 3 and 4 we have
a=31)+1=3+1=4

Similarly, a,=3(2)+1=6+1=7
a,=3(3)+1=9+1=10
g=34)+1=12+1=13

The first four terms of the sequence are 4, 7, 10, 13,

(i) a=37"-13

Substituting » = 1, 2, 3 and 4 we have
a =3(1¥-3=0 _

Similarly, a, =3(2P-3=3(4)-3=12-3=9
a,=303P-3=39)-3=27-3=24
a,=3(@y-3=3(16)-3=48-3=45

The first four terms of the sequence are 0; 9, 24, 45.

Sequences of numbers are also called progressions. Depending on the pattern, the

progressions are classified as follows:

() Anthmetic progression (ii) Geometric progression
(iii) Harmunmprogmsston
~\J" EXERCISE 6.1 _d
1. Find the nesbdéur terms of each sequence,
) 12,1620, ... () 3,1,-1, ...
2. Write down the first three terms of each of the following sequences:
() @=3n+5 (i) a ,,=4a —7 and a,=3
: 3
(i) a»=(r-3)n+1) (iv) a=-1 a,,=
a +2
) a,=8-—2 0D @ =1, 4,,=0a,+2)
3+n
(vii) @, = (-2 (vili) a, = (1§ 74*

. Write down the 15
triangular mumber. Make a friangle of dots by teking 2 = 3.

3. An expression for the »™ triangular number is m(rle-I)
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4, Wriie down the ™ term of each of the following sequences:

@ 1,4,9,... @) 1,1+2,1+2+3,...
(i) @, b, @, by ar by, ... (iv) x, 2%, 35, ...
) a,a,+da,+24d, ... i) a,,ar,ar ...

al ] zal 3ﬂ3 = L viiil’ l b 1 »
()51“& bte, B+e, ( )41 a+d atd

6.2 Arithmetic Progression or Arithmetic Sequence (A.P.)

A sequence {as} is called an arithmetic sequence or arithmetic progression (AP.), if
On — tix1 i8 the same number for all # € Nand » > 1. The difference dz —an1 (> 1)
ie,, the difference of two consecutive terms of an AP, mcnlladmecnmmnn
difference and is usually denoted by d.
Thm,maﬂthmeucpmgmssmnmasequmeinwhichmhtemaﬂmﬂmﬁntis
obtained by adding fixed constant to the previous term. This fixed constant is called
commaon difference of the arithmetic progression.

For example: Following sequences are in ALP.

(i) 1,3,5,7,... (common difference ig 2)

(i) 54, 51,48, ... (common difference is -3)

An arithmetic progression with # terms ¢an be written
as:

Ifail a.’ azl (] “.,"- miﬂA.P.’

then d=g. -a=da,—a =..
“diﬁen_iln“‘tﬂmafﬂieu.

a, a+d,a+2d,..,a+(n-1)d
The #® term of an arithmetic progression can be written as:
a,=a+({n-1)d

(i) 1= 2+ 3"“& ofan AP, ere denoted by a, 2,, g, and ¢, respectively.
(i) n"’ tﬁlﬂﬂlﬂ.ﬂflﬂ” is (mt — s+ 1)® term where *m’ denotes the total mamber of terms

{iif) Thummhma.b.rmmﬂ.lfmdunl}'lfﬂa—a+c.

(iv) Any term {except first snd last) in en AP. is equsl 1o half of the sum of two terms equidistant
from it.

{v) Eﬁctmalisunlnmnrnutgivm,ﬂmn"’tmn'bcwﬂttmasn"=a_+{n—m}d.ﬂ2m.

| Note that the subscript of the given ferm and cosfRcient of o som to »2.

The middle term of an A.P. depends upon the number of lerms, for example

i 1,3,57.9 1lisan AP.withn=6

(i) 1,3,5,7,9,11,13 is an A.P. with n="7
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1.e., If the total number of terms of an A.P. 18 even, then there are two middle terms 1.e.,
th

[g) and [g + l)m where n represent the mumber of terms. In example (i) §, 7 are

two middle terms,

If the total mumber of terms of an AP, is odd, then there is only one middle term ie.,

2

6.2.1 Selection of terms in A.P.

(i) Three consecutive terms of an A.P. can be chosen as a—d, a,a+d ora,a +d,
ora-+2d

(ii) Four consecutive term of an A.P. may be written like a -3, a —d, a+d, a+3d
ora,atd,a+2d,a+t34d

(iit) Last four consecutive terms if £ is the last term can be written as below:

£-3d,£-2d, F—d, ¢
If each term of an A.P. i3 increased or decreased, multiplied or divided by same non-zero
number, then the resulting sequence is aleo anALP. that is, if o, a,, 4,, ..., @, ... ArE N AT
with common difference d then
i) gtk atk, .., a¢ Lk, .. arealsoin AP, with common difference ‘d’.
(i) ka, ka,, ... k4, ... are dlso in A.P. with common difference ‘kd” .
d

(i) %, %, .%. -+ &r¢ also in A.P. with common diffirence +-

(iv) Term by term additon or subtraction of two A.Ps. is also an AP, ie, If
a, a:,_q, iy, .. and b,b,b, .. b,.. are in AP, then gt b, q = b,
a, + b, ... are algo in AP,
[ETYTIF 2| Find the general term and the eleventh term of the A.P. whose first term
and the common difference are 2 and —3 respectively. Algo write its first four terms.
Here, ¢, =2,d=-3
Welknow that ¢, =a, +(n— 1)d
So, g, =2+EmE-1}¥-3)=2-3n+3
a, =5-3n (i)
Thus, the general term of the AP. is 5-3n

["—”Tmmmle(ﬁ)mthemlymiddlem.
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" 11 in (i), we have

ay, =5-3(11)
=5-33=-28
We can find a,, a,, a, by puttingn=2, 3,4 in (i), that is,
a4, =5-32)=-1
@ =5-3(3)=-4
@ =5-34)=-7

Hence, the first four terma of the sequence are; 2, -1, -4, 7.
(B 3| If the 5™ term of an AP, is 13 and 17% term iz 49, find @, and a.
EIITTTT Given that a, =13 and 2, =49

Putting n=5in o, — & +{n— 1)d, we have a, = a,+(5<1)d.

as =a +4d -

13=n+44 Coa =138 V)
Also . =6 +{17-1)d

49 =a,+16d (- i« =49)

49 =(a,+4d)+12d
49 =13+12d by ()
= 12d =36 =..4d=3
From (i), @ =13-4d=13-4(3)=13-12=1
Thus a, =1+¥(n-1)3)=3r-2 and
au=3ﬂ3)—2=39—2=3'?
Findthsnumharut‘tmnsinihnA.P. ; ifa =3, d=Tand a,=5%

XTI, Using @, = 4, +(n—1)d, we have
39=3+(m-1)x7 (v a=5aq=3andd=7)
6=p-1xT=>n-1=8=n=9
Thus, the terms in the A.P. are 9.
BT S| IF @, =3r—11 find the A term of the sequence.
ENTTTTN, Replacing n by n+ 2, we have
Gy =3(n+2)-11
g,=dn+6-11
a,=38—5
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11.

12.
13.

14.

15.

16.

17.

18.
19.

" EXERCISE 6.2 P

FmdmawmonmﬁmmmmdmmmnnmmmmrmofmchMMc
sequence.

G 9,16,23,... ) 5, 5+v2,5+242,...

Write the first three terms of each arithmetic sequence, with given information,
) «=24d=13 (i) @ =12,d=-13

Findag,  ,mda, ifa =4+3n

Find the indicated term of each of the following arithmetic sequenogs:

(i) @=3d=7a, (i) 8,3,-2,..,q,

The 18 and 30 terms of an mthmnhcseqummm?pﬁ‘?x@ 9 respectively.
How many terms of this sequence are less then 10007

I530] atermof'the AP. 5,11, 17,...7

If2x, x + 8, 3xr + 1 are in A.P., then find the v. of x

Which term of the AP, 3, 8, 13, ... is 1237

Which term of the AP., 30, 29.5, 29 IAI\ t negative term?
'Ihs'?“’andzl"tmmsnfmAP are3 07 respectively. Find the AP. and

its 100 term.

1f 1 1 : _a-—¢
ga-¢ b b-a a—c b-a

How many numbers of are divisible by 77

Find the 8 term from ofthe AP_8, 11, 14, ..., 185.

] ]
Fmdth:n“’tenﬂ angrmun [3]1 .[?] :(l??j 5+« . 15 the progression
EIIA.P?

If the 1 progressions 3, 10, 17, ... and 63, 65, 67, ... are such that their
n® equal, then find the valve of .

If the g™ term of an AP. is g and the ¢ term is p, prove that its #® term is

(z+g—n)

i), )i ! seis AP dhowttiat b2,
a b c a+ce

I.fl land— arein AP, shnwmmmemmmnndlﬁumcemu
a b 5 2ac

If @, end &, denotes two different ferms of an A.P., show that its #™ term is
il k)(—"a).
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20. If a,.a,,a,,..,4, sre positive and in AP, prove that
1 - 1 n—-1
R R R e
21. Ifthe roots of the equation (b—c)x” +{c—a)x+{a—5)=0 are equal. Show that
a, b, c are in A.P.
22, 1Ifthe sides of a right-angled triangle are in A P., find the ratio of iis gides.

23. If the a* term of a progression is a linear expression in a, umnpmwe that this
progression 18 an ALP, -

6.3 Arithmetic Mean (A.M.)

Ammberdlssa:dtnbetheﬁ,]\lbetweenthetwunmnbe;raanﬂbﬁa.d b are in
AP. If 4 i the common difference of this A.P., thenA a—n:iandb A=d.

* USaTh -~ hetwmmmbm;mﬂam
a+d U Sdd b A banin AT,

=9 A= 4

[ZTTT0 6] Find three A.Ms. b:twmﬁ and 3+/2.
PRI Let A, 4, 4, be three A.Ms. between V2 and 342, Then,

2, A, 4, Ay;37 arein AP,
Here a,=+2, n=5, @“=3\5 using a,=a,+(5-1)d, wehave 32 =2+44
o gl V21
4 2 2
Now A4 =a+d= 2+% =2_-;1=12
3 1 _ 4
—A+d=——t+—=—=22
h=dnid= gt g
1 +1 5
= d= = =
Sl g

3 5
—, 22, — th . b "
Thsmt‘ore.ﬁ Wz ﬁm ¢ three A.Ms. between v/2 and 3v2
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P EXERCISE 63 _{

1. Find A M. between the given numbers:

@ 23,243 G (a+b)',(a-5)’

If 6, 11, 16 are three A.Ms. between a and b, find @ and 5.

Insert Gve A.Ms, between ﬁ and %

The AM. of two numbers is 7 and their product is 45. Tiud!hcuumbers

If n arithmetic means are inserted between g and b, prove that d'ﬁ where
(Y n

okl ol o o

o is the commen differénce.

6. IfAisthe AM. between a and b, pruvsﬂmt(d A) +(zi b) ——( b]

7. For what value of », @ mtheAM batwasuaandh where a=b.
a2

"+5
6.4 Series
Thﬂsumofthctcnnsufasequmoemcaﬂtdthcnﬂnesnfﬂlecmpondmgwqumoe
For example, 1 +2+3+ .. +nmaﬁniheesnfﬁmtnua.tm'almmhcrs
Thsesumofﬁrstntermsnfsenesmdqnotedbysn
Wewrite, Sy=a1+ @z + o +dny
Here, &, =g N
S=ata O
S,=a1+¢_:2:_l-'-£§§ .
Sy=a; +a, ¥ ay + - + @y is known as #™ partial sum,
The sum of the terms of an arithmetic sequence is called an arithmetic series.
To develop & fornula for the sum of any arithmetic series, consider
S, =a, +(a +d)+(a, +2d)+ .. + (a,— 2d)+(a,—d) +a,
8, =a,+(a,—d)+ (&, —2d}+ -+ (g +2d)+ (2 +d)+a
Thus, 25, ={#~+a)+{g+a)+(g+a)+ +(g+a)+(a+a)+(a+a,)
=n(a,+a,) [ We have nterms of (e, + a,)]

S.=%(ﬂ1+a.}
But, a =a+(n-1)d

Thus, S,:%[u]+al+(n—1)d]=—;[2al+(n—l)d]
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Find the sum of the first 100
positive integers. The mum S, of the first 7 terma of an arithmetic
[T, The series is 1 +2-+3 + . +100, | Series s given by

Since we can see that g =1,4 =100and Sl=§[2¢l+(u—]_]d]m' s, =—Eﬂ ita,)
d=1.

Method-1 Method-2
g =%(a1 +a,) s, =g[2.-.-1 +(n—1)d]

Sua=" (14100) | =" [20+100-DE]

S0 =5000) | Sip=50(10D)
8, = 5050 8,00 = 5050
Find the 19™ term and the partial sum of 19 tertns of the arithmetic series:

2_,_3_,_ 5+E+---
2 2

T Here, a,=2, a,= % and d = a,___—'_q_ﬁ-[:..-%—2=%

Using a,=a+(@m-Nd.
Substihte 2 =19

ay = 2+09-D>
s 2
_{=.2+1s(g]=2+27=29
5 n
Usinp(y 5, = o (a+a,)

19
8y = E(al"'“ls}

19 19 ... 589
Sy ="—(2+29)="—-(3D)="22
9=, Q+2)=70GD=—7

Find the arithmetic series if its fifth term is 19 and §, = a,+1.
Given that a, =19, that is,
a,+4d =19 i)
Using the other given condition, we have
5, = %[2:11 +{4 - Ddl=a,+1




4a +6d = g +8d +1
30,~1=2d
Substituting 24 = 3@, — lin (i), we have
a,+2(3a,-1)=19
Ta, =21 = a=3
From (i), we have,
4d =19-a,=19-3=16
= d=4
Thus, the series i8 3+ 7+ 11 4., _
[T 1910| How many terms of the series -9 — 6 —3 + 0 + <., smount to 667
Hma.al=—9 andd=—6—(9)=3.
Let § =66

Using S, =%[201 +(n—Dd], we have

66=_ [2(-9)+(n=1)3]

132=n[3n-21]« = 132=3n(n-7) = 44=n(n-7)
n*—Tn—44=0 '
_1£49+176

= H= 2

J 744225 7415
T2 2
But # cannot be negative in this case, so a = 11, that is, the sum of ¢leven ferms is 66.
[ZTTa111] Find the first three terms of an avithmetic series in which a, =9, g, =105

n=11,-4

and §, =741.
Step - 1: Since we know a4, g,and §,, | Step-1I: Findd.
We use S_=E(al+a_)tuﬁndn. i il COE
2 105=9+({13-1)d
n 96=12d
T4l=—(9+10
5, 0+103) y
741=57n
13=n
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Step - 111: Use d to determine a, and a,.
a=2+8=17, a,=17+8=25

The first three terms are 9, 17 and 25.
P EXERCISE 6.4
1. Sum the series:
D) 3+6+9+-+ay, (i1} %+J§+%+---+q‘
2. Find S, for each arithmetfic serica: 6&‘
@ @ =4n=25a=100 (i) al=4n,n=zu,d§3®
(iii) @,=52,n=21,d=—4 _j:i\

3. Find a, for the arithmetic series: d =8, n=19, § =),'f\8@,’.-

4. How many terms of the series: 96 +93 +90 + - ¢<amount to 1071.
If the three sides of a right-angled h'iang]f{m&m;:ﬁmetcr 36cmarem AP,
find them. N
6. Sum the series C)
@ 3+5-7+9+11-13+15+17=19+ - {0 3n terms.
() 1+4-7+10+13-16+19 +22-25+ - to In terms,
7. Find the sum of 20 terms of thi Series whose # term is 37 + 1.
The 5% and 9® term of%@P. are 11 and 17 respectively. Find the sum of 20
teTms.
9.  Obtain the sum of gl i gers in the first 1000 positive integers which are neither
divisible by 5 :
10. The sum o of an A P. is 171 and its eighth term is 31. Find the series.
11, Thcsﬂ‘u:l@- an arithmetic progression is 21 and the sum of first six terms is
90. i the 18® term.
12. The sum of three numbers in an A.P. is 24 and their product is 440, Find the
numbers,
13. The first four terms of an A.P. are 2, 6, 10 and 14. Find the least number of terms
nceded so that the sum of the terms is greater than 2000.
14. Find four mmbers in AP, whose sum is 32 and the sum of whose squares is 276.
15. Find the five numbers in A.P. whose sum is 25 and the sum of whose squares is
135.
i 1 1

16. If L . are in AP, then show that &*, &°, ¢* are in AP,
a+d c+a b+e

-
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17. Thu surn of the first four terms of an A.P. is 56. The sum of the last four terms is
112. If its first term 15 11, then find mumber of terms.
18. The first, saccond and last terms of an A.P. are a, H and ¢ respectively. Show that
(b+c-2a)(c+a)
2(b-a)
19. Show that the sum of n AMs. between a and b is » tines the single A M. between
them.
6.5 Geomeiric Progression (G.P.) _
A geometric progression or geometric sequence is a sequence fixed in which each term
aftertheﬁrsnsfuundbymuluplymgﬂzepmﬂmmmhyam-zemmtmnrcaﬂad
common Tatio.
Like arithmetic progression, we can label the terms ofq,_g‘p&meh'ic sequence as
G, a;, @, and so on, a,#0. The a™ term is a, and the previous term is a, ;. So,

the sym of AP. is

a, = r(a, ;). Thus, r=—=

H—1
term by its previous term. (
6.5.1 Rule for nth term of a G.P.
Eachtemaﬂmheﬁmtmismrmﬂﬂpleoﬁmpmedhgmmmhm,
& =ar=ar"
@ =ar=(aryr= alr1=a1r" :
=ar= (alrz_}r_#ﬂf ar*

a_ alr"" WMchlsthegensmltermofaGP

652 Fmperﬁes of G.P.
(i) Ifeach term of a G.P. is multiplied or divided by the same non-zero number, then
the resulting sequence is also a G.P. that is if g, g,, 8, ., £,, .. AT in G.P, and kis

a non-zero number, then

() kg, ke, k2, ..., k2. arcalso in GP,
5.5 &, &, . aecdsoinGP.
B gy e
(ii) The reciprocals of the term of 8 G.P. also form a GP. thatis if 2, b, c are m G.P.,
111

then — arealsumG.P
a’' b’
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(ii1) lfear.h term of a G.P. is raised to the same power, the resulting numbers alse form
aG.P. thatis, if g, b, c are in G.P,, then &°, 5", " are alzo in G.P.

(iv) Three numbers a, b, ¢ are in G.P. if and only if ¥* = ac.

{v) Ifthe set of positive mmbers a,, a,, a,,...; @,,... arein G.P., then log g,, log a,,

log @y, wey log @, ... are in AP, and vice-versa.
(vi) Term by term multiplication or division of two G.Ps. are again in G.P. i.e.,
if a,, a,, a,..., a,, and b, b, B, ... ,b,, are m G.P. then gh, ah, ah, ...,
ab, am:lE E E :“—”arealscinGP
154101112 Find the eighth term of a geometric sequence l:'m' which @, =-3 and
r=-2.
Herc. a=-3,r=-2,n=8
aa:='a'1‘rn_l
a, =(-3)- -2)""
=(-3)- (-128)
a; =384
Find the n® term of the G.P., 3, 12, 48, ...

ENTON, Here &, =3, r=4

a=a-r"
a,=3 4~
Find the tenth term of the G.P., for which a, = 108 and r=3.
Step- 1: Find a,. Step - 2: Find @,
"'Eﬂl.'a,n=4, r=3, a,=108 Here, p=10, g, =4,r=3
al=al'rn—l a.=ﬂl'r"-1
4=a1_34—1 H:m=4l.3lll—l
108 =274, &, =T8,732
4=a
@ =4

[P M15| Find the 5% term of the G.P., 3, 6,12, ....

[T, Here @, =3, a, =6, therefore, r=2 = 5 — 2.

a 3
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Using a, =ar™" for a =5, we have
a=ar'=32"=3.2'=48

Find a_ if «, =% and a.,:% of a G.P,
Solution: To find g, we have to find ¢ and r.
Using a,=ar" (i)
S 8 -
O =l
a=ar =ar , 8 gr=_ @ .
and “7=“1r1 } =,ﬂ’1r‘E , B0 E1r6=ﬁ (m}
, or
T, @ _729 _-8 ,;=[—_2]’ A
27 , O
= r=—§ ( - N\ (taking only real value of 7)

Put r3=_% in (ii), to obtain a, that 15,

[_'i)_i o g
“uS g T &

Now putting g =1 and r=~_?2in (i), we get

| -;.;_-fé—l)[—§]"_l = -0 [%]' =1 @T :

' " EXERCISE 6.5 _d

1. Find the 6 term of the G.P.; -6, -3, _—23

2. Find the 8 term of the sequence, 3, 3%, 3, -,

3. The n™ terms of the sequences 1, 2, 4, 8, --- and 256, 128, 64, --- are equal. Find
the value of n.
4. TFind the first five terms of cach sequence deseribed:

@ a=243, r=§ @) a=579, r=—§




. B Fmdthelzﬂ‘tﬂmofl+.i2£ -2+, -
6. Ifthe 4" and 9* texms of 2 G.P. are 54 Bnd 13122 respectively. Find the G.P. Also
find its geners] term.
7. Wa,b,c, darein G.P., prove that
) a-bb-c,c—daeinGP.
(i) a*—b*, 8" -c,c*—d* aein G.P.
(i) &®+5, B +c*, ¢t +d*are in G.P,
B. If(p+ q)"term of a G.P. is mand (p - g)‘htmnmn.ﬂmnhndﬂn?‘;“’tmn
9. Find three consecutive smmbers in G.P. whmemmmlﬁand‘thm‘pmductmﬂﬁ
10. The 3" term of a G.P. is the square of 1% term, If the 2™ wimtis 9 then find the 6%

term., £ Q'
\
11. fl %andl are in G.P. Shuwthaifhewmmuﬁ‘mom :I:J_
a c

12. 1fthe numbers I, 4and3msuhh'actedaﬁu;h~ﬂ1reﬁcthvatermsofanA.P
the resulting numbers are in G.P. quéeoﬁgnmnumhmﬂmeixmmm

13. 1f three consecutive nmnherﬂmA.? a'remcrenaedb}'l 4, 15 reapectively, the
resulting numbers are in G.P. F@dthﬂongmalnumhm if their sum ig 6.

14. 1If p®, ¢® terms of a G.P. mqandpmspechvely,ahﬂwﬂmt(p+q)“’tmmm
1 ‘\
(¢°=p%). .C1(

\_

15. Ifa, 2a+2, 3a+\§“;.».‘. are in G.P., then find the fifth term.

6.6 Geomeﬁ“,lc Mean (G.M.)

Anuml:m'G:&ﬁdtoheag:umﬂm:mnm(ﬁhl)betwmtwnmmbmamdblfa,
G, bmm&d" Therefore

.2 G, Gy Gy, ..., G, are said to be n
G ‘G Ms. betweoen two mumbers @ and b if 4,
= G =+ab

BTTIT17| Insert three (.M. between 2 and %

TR Let G, G, G, be three G.Ms. between 2 and . Therefore
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zq,ez,c;,,;mmefnmq z,a,— and n =5.

Using a, =" we have
a=ay®” thatis, a; =ar* @)
Now substituting the values of a; and g, in (i) we have

%=2r‘ or r‘=% (ii)
Taking square root of (ii), we get
o
2
We have, r2_l or rzz—lzii 1=i%)
2 2
1 1
= ;«*—:I:—2 or r—iﬁi
When r=is then G, =2(i\—\’,_ G 2[ J,—l G, =:.‘:|I’L))=i
2 b2 V2 A2 A2
-1 -1 (-1 1
et "E‘"‘“’G"Z(EF"EG ’(ﬁ] . G"zﬁj"ﬁ
_E oL 5 _[LT__ _ ’LJ’__L
When r—ﬁ.ﬂlml?lji(ﬁ)—ﬁ:,{}i—z == I,GJ—Z“E -7
When =_—i.lh=ﬁ-( =—J2i, G, =2 j=lG 2'—]J=i
r= g b 6= 1.6 )&

mrulnﬁﬁh&mumﬂyﬁmbuthﬂenﬂmm are congidersd to widen the outlook ]
of 1

PV EXERCISE 6.6 4

1. Find G.M. between:
(i) 2and8 (ii) —2jand 8i (iii) 6and 9

2, Insert four real geometric means between 3 and 96.

3. I both x and y are positive distinei real numbers, show that the geometric mean
between x and y is less than their arithmetic mean.

4, For what value of n, ;:i

i

is the positive geometric mean between g and b7
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5. Th& A M. of two positive integral numbers exceeds thedr (positive) G.M. by 2 and
their sum is 20, find the numbers.

6. The AM. between twe numbers is 5 and their (positive) GM. is 4. Find the
munbers.

7. The arithmetic mean between two positive mumbers ¢ and b is double their
geometric mean, Prove that a:h=2++3:2—3 .

8. Ifone grometric mean G and two arithmetic means p and ¢ are inserted between
two positive numbers, show that G* =(2p—g)( 24— p

6.7 Geometric Series

Suppose you e-mail an Islamic quote o three friends on Monday. Each of those friends
send it to three of their friends en Tuesday. Each person whe' receives the quote on
Tuesday sends it to three more people on Wednesday and go on.

E-Mal L i X1
9

'@'-- Mondgy ==m==s=m==ne= _ , l 1 X

- Tesduy s 2 9 g £ 1 £ )

-Wednmdﬂx--- AR aah afh aaa aaf aan 466

Notice that every day, the mumber of people who read your Islamic quote is three times
the number that read it the day before. By Sunday, the number of people, including
yourself, who have read the quote is 1+ 3 + 9+ 27 + 81 + 243 + 729 + 2187 or 3280.
The numbers 1, 3, 9, 27, 81, 243, 729 and 2187 form a geometric sequence in which
@ =1 and r=3.The indicated sum of the numbers in the sequence, 1 + 3 +9 + 27 +

81+ 243 + 729 + 2187 is called a geometric series.

The sum of a geometric progression can be written as: §, = E‘(: rx)

—-r
To develop & formula for the sum of a geometnic series, consider
8 =g +ar+ar’+ . +ar  +ar" itart! (i)

3 1

rS.= ar+ar+.+ar" +art t+art  ar” (ii)

Subtracting (if) from (i), we get
8,—rS, =g —ar’

Ifr=1,then 5§ =na,




[ETTTTIYiB] Find the sum of n terms of the geometric saries if , = (—3)[%)..

TR, We can wite (-3 2 o
()T -EIET ameas()ET 3
et ] e
e, 5,=%0"7) _%[I_Eg].]
CE-CI-C]]
rEXERCISEGT J

1. Fmdthesmn&l‘ﬁrstlﬁlermsofﬂze(jl‘ 1, l 1

2. The 3™ m_ut 2 G.P. is 16 and the 6™ term is —128. Find the first term and the
sum of the-first seven terma,
3. Sumtx uhnfns the series:

@ 024022 +0.222 + - (i) 3+33+333+--
4, Sum to » terms the series:

@ 1+(@+b)+(@+ab+ ) +(@+ab+ab + %) +
() r+(+B2+(1+k+BP +-

s Sumthcsm-im2+(1—f)+(]7}+-”taStcms.
i
6. Show that the ratio of the sum of fitst # terms of a G.P. to the sum of terms from

(n+ 1) to (2n)* term in %Ywhererismecummgnmﬁn of the G.P,
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6.8 Anthmetmo—Genmemc Progression (A.G.P.)
Suppose a,, a4y, @3, ... » Gy ... iSE AP, mnd b, by, By, ... , B, ... 18 2 G.P. then the
sequence formed by multiplying the comresponding terms of A.P. and G.P., that is, a,b,,
@b, aybg, ... y @ D, ... 18 said to be an arithmetico-geometric sequence.
Consideran A.P.,a,a+d, a+2d, ..., {a+(n—1)d} and a G.P, b, br, bs?, ..., br" 1
where r=1.
Multiplying the corresponding terms of AP. and G.P., we get an arithmetico-
geometric sequence
ab, (a + dbr, (a + 247, ..., {a+{n— Dd}br*-!

Note that the #® term of arithmetico-geometric sequence is pmcluut of n™ term of AP,
and n® term of G.P.
6.8.1 Arithmetico~Geometric Series
Sum of the terms of arithmetico-geometric sequence is called arithmehco-geometric
series. Thus, arithmetico-geometric series has ﬂl&ﬂnm

ab+ (a+dbr+ (a + 2k +7- F{a + (n — 1dpbr1
Swum of first # Terms of Arlthmetico-Gedmetric Series
Let S,=ab+(a+tdbrt(at2dbr’s - +[atpn-1dbr! (i)
Then 78, = abr+ (@ + )b + < Fla+{n—2Ddbr— +a+ (n— 1d]br (i)
Subtracting (ii) from (i), we get
(1 -7 S, = ab+[dbr+dbr2+ -+ dbr"~Y| — [a + (n — 1)d]br"

=ab+@ﬂ-[a+(n-1)d]br-

-gb+fi’-‘”” —[a+ (n— D)djbr

r .

g b, dr & et D
* 1-r (-r* (-r)? 1-r

which is the sum of the n terms of arithmetico-geometric series.
6.8.2 Sum to Infinity of Arithmetico-Geometric Serles
fri<l,thenr*—=0andn — Oasna—»
Therefore, (iii) reduces to 5, = %2 + %" _

1-r (-1
which is the sum to infinity of arithmetico-geometric series.
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BT IM19)  Sum the series upto m terms: 2-1+3-2+4-4+ 58+ -
LetS =2-1+32+427+5-2°+ - to n terms
n®term of the AP, 2,3,4,5, - isa, ~(n—1)d =2+ @ —-1)(1)
=2+n—1=n+1
a" term of the G.P., 1,2,2%, 2%, -~ igap™! =127 1=20-!

So, S,=21+32+42+52+.-+@m+1)2""" (D)
Multiplying both sides by common ratio of G.P., we get

28, = 22+3224+4-B+52 4.+ (@2 + (a + D2 (D)
Subtracting (ii) from (i), we get

5 28, =21+(3-2)2+@-3) 2+ (- O+ -k w+1-m2"' — (n+1)2"
—8 =21+ 12+ 124+ 12+ +1:2* " - (a4 1)2"
-8 =2+{2+2242 4+ + 22 1} (- D2"

s,,=2+2(2* ) _ (4128
_8, =242 2 g2
—8, =-n2
8, =n-2"
20| Sum the seties upto  terms: 2+:+:+7+
4 6 8§
Soalutio o
Let.S' 2+3 5 g » o 71 terms
2 term bf the AP, 2, 4, 6,8, ... i8 2+ (n— 1}2)
=2+2m-2=12n
i term of the GP, 1, 15 1, L {s()(]_
3 27 Cal
So, S—2+4+6+i+ +£i (1)
3 9 2 3™
lS',,= 2,2, 8, --+2"_12+E (i)
3 3 9 27 i 3"




S (ii) from (i), we get
( I}S 4-2 6-4 B-6 Zn—-2n+21 In
1— |§,=2+ i + +oe =

3 3 9 27 2 i 3
ES‘=2+ E+%+£+...+il:|_z_"
(3 9 27 ) 3¢
_ &
(7]
2 2n
S8 =2+ s
3" 1_1 3
3
1
%{1_[%T} 2n
=2+ E _3_1
3

§S"=3‘[%T‘_?"[ﬂ
)

Find the 'sum to # terms of the series: 1 + 2x + 3x? + 4%* + ... where
x# 1. If |x| < 1, sum the series to infinity.

T, - Let§, =14 20+ 3+ 3+ oo ! (D
nooxS = x+2EEI0 e D) e (i)
Subtracting (ii) from (i), we get
(1-x8, =l+x+2+22+ -+ -
IRV S
1-x
_1-x"—n{l-x)x"

1—x
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_ -2 - ™
1-x
a-5s, = 1—(m+1)5" +nx™
l-x
s _ -+ D" +mx™
> (1-x)*
Iflr| <1,thenx®— 0, nx"—0 a8 n — “l
S 1 .'”\“_(‘-
I = 1 }-—J‘
(l—I) ru-\.\&f

rEmcmEﬁsJﬁ‘i“

1. Find the 3% term of the arithmetico-geometric sequen&a. whsre the arithmetic part
is1,4,7, ... and the geometric part is 5, 10, zobi{“

2. Find the n® term of the nnthmsﬂm—gwmeﬁuq sequence, where the arithmetic part
i8 3,7, 11, ... and the geometric me i\ﬁjlﬁ

3. Consider the mﬂ:mchcu—gmmctrﬁtﬂt[nmm defined by arithmetic part:

a,,=2n+5 andgcumemcpqm —( —3)". Find the ™ term and the sum of

first three terms of the aqﬁméucu-genmm sequence.
4, Sum to a terms the fﬁﬂfﬂj\u'mg series:

(i 12+34+§S4715+ (i) 23+432+637+83"+...
5.8 11 3 5 7
2+ ,m # g e M) L=ttt
(i) 2 R (i) e
7 10
l+ — -
® 3 9 27
5. Sum the following infinite series:
(4] l+3+5+?+ (i) 2+5+B+£+
2 4 B 39 27

6. Showthat 22- 4% - 8%-16% .- s0=4

7. Show that ¥4 - 416 ¥64 - §256... =




<uo> mamenntis (T

2.  Sum to n terms the seties 2+ 4x+6x* +8x + --- whare x#1

., . 2w+l (2m+1Y  (2m+1Y
9., Find the sum to » terms of the series: +3 J+5 +
2n—1 2n-1 2n—1

i
10. Prove that 1+2[l+lJ+3(|+—l] - tonm:nl
n i

11. Sum the series to n terms 2+ 5x+8%° +11x°+... and deduce the sum to infinity
if g <1. '

6.9 Harmonic Progression (H.P.)

A sgequence of numbery is called a Hormonic Sequence ner‘nnn:'t'E'ngression if the
reciprocals of its terms are in arithmetic progression. The séquence 1, %,%.% is a
harmonic sequence mince their reciprocala 1, 3, 5, Tu&mA.P

Rsmbﬂ'thatﬂlemclpmcalnfmomnotdgﬁned, so zero camnot be the term of a
harmonic seguence. :

1 1 1 1
The general form of the harmonie —s Ve .
. ° “_q“mm o a+d a+2d " a+(m-1)d
1 1 1

Find the n™ and 8" terms of HLP. : Sipignton

Thﬂremprocals nfthetenmnfthn Sequence,

1 L1
g8 ARG

The numbers.2, 5,8, - arc in A.P,, 50
g =2andd=5-2=1
Putting these values in a, =a, +(n—1)d, we have
a, =2+(@m-1)3
=3n -1

1
Thus, the »® term of the =—
n of the given sequence= 7 3r: 3 =




1 _1
Ix8—-1 23°

we get the 8% term of the given FLP, which is

Alternatively, a, of the AP. =a,+(8-1)d
=2+7(3)
=23

Thus, the 8 term of the given FLP, = i

23
If the 4 and 7® terms of the H.P. are % and % respectively, find the

sequence.
Sinceths4ﬂ’te1mofﬂleH.P.=% mdimﬁm:-%, therefore the 4%

and 7% terms of the corresponding A P. are ? and %.mspecﬁvely.

Now taking 4, , the first tenm and 4, the common difference of the corresponding AP.,
we have,

13

A= i
a@ + = @
and al+6d=§ (ii)
Subtracting (i) from (ii), gives
3d=§—E=6 = d4=2
2 2
From (i), we get
13
= A
4“7
13
=6
2

Thus a4, ofthe AP. =g +d =

and @ ofthe AP.= q,+2d =- +2(2)




Hemnce the required HLP. is E E E 3
15913
6.9.1 Harmonic Mean (H.M.)

A mumber H is said to be the harmonic mean (H.M.) between two numbers z and b if
a, i, b are in H.P.

Lot b be the two nombers and B be-their EM. Then 1 %,_%‘m'inA.P.
a H b
1 1 b+a
Therefors, =~ =4 b ab _8+b
G H 2 2 2ab
and  H= 0
a+b

For example, .M between 3 and 7 is
2x3x7 _2x21 _21
3+7 10 5

6.9.2 n Harmonic Meaus between two Numbers
H.H.H, - H, are called # harmonic means (FL.Ms.) between ¢ and b if
a, H, H,, H,, ., H_, bare in 1LP. If we want to insert n H.Ms., between a and b, we

: 1 1 T i
first find n AME 4, 4, ..., 4, between EME’ then take their reciprocals to get »

NG Betviisen i b UGt T8,

; Zi will be the required 7 ELMs. between

¢ and b,

Findﬂ:reeharmonicmmsbetween%md%.
EITTITN, Let 4, A4,, 4, be three A M. between 5 and 17, that is,

5, A, A, 4,17 are in A.P.




Using a, = & +(n—1)d, we get

17 =5+(5-1)d (+ a.=17 and a,;=5)
44 =12
= d=3
Thus, A=5+3=8 A, =5+2(3)=11 and 4,=5+33)=14
1 1 1
Hem_ces T are the required harmonic means. ,1\_4‘;*
P’ EXERCISE 6.9 d .
1. Fmdthe?“'hmnofthgfoﬂuwmghmnnmsequmcmr ‘:\*
111 o4 K9
ﬁ) E‘ EI ?, as (ﬂ} ?I ?’ _t.‘:::::\
2. Insert five harmonic means between the fo F{B:égwennumhers
. -2 2
(D ?andﬁ (ii) a{fﬂﬁ—

3. Thefirstterm of an H.P. is ——@‘ﬂmﬁﬂhtﬂmm% Find its 9% term,

\—\.
4, If5 isﬂ:chmmonicmm@twbmzmdb,ﬁndb.

O
L lfthnnumbem—, ]"1,(4 ! minhmnnicsequenw,ﬁndk.
K@
6. Fmdnsnlhgkf?-'-zu may be H.M. between 2 and b.
7. ,“_ﬁ\ c’mmA.P show that @ + b, ¢+ a and b+ ¢ are in H.P.

8. If the HM. and AM. between two numbess are 4 and E respectively, find the
numbers,

9. If the (positive) GM. and HM. between two numbers are 4 and %, find the
numbers.,
i s ate & oth o8 o AT ihow e con R ilD.

a b I




i1. lfa,b ¢, d are in HL.P., show that 3(a—&Xc— &) =(b—ca—d).
12. 1f between any two numbers there are inserted two A Ms. 4, 42, two G Ms. Gy,

H +H.
and two H.Ms, Hi, Hy; show fhat 2t _Hi+H;
(€)) 1, 13; show that GG, HH,
13. The H.M. of two numbers is 4. The AM., A and the G.M., & satisfy the relation
24 + G?= 27, Find the numbers.
14. First three of the four numbers ¢, b, ¢, d are in AP., and the next three are in HLP.,
show that ad = be.
15. 1fa, b, c are in G.P., show that log, x,log, ¥, log xerein FLP. (7 _
16. 1fa, b, c arcin H.P,, show that
(i) :—_b=£—: (ii) (a—c}==(a+c)(a;~'ﬂ$’4—-c}.
—o
17. 1f2+x,5+xand 9+x are in H.P,, find the value of
18. 1fthe roots of the equation (b — c),xz+b{c a)x-Fc(a 5) = 0 are equal, prove
that @, b, ¢ are in HL.P.

6.10 Miscellaneous Series
The Greek letter Z{sigma) is used to dﬁl’ﬂf&lﬂ:ﬂﬂ of different types. For example, the

notafion Za, musedtnexprmﬂle suma, +a,. ,+a,,,+-~-+a, end the sum

I=m

expressiunl+3+5+- tummrms:swmtenasZ(Zk 1), where 2k — 1 is the &%
k=l

termufthemmmdhs«ca]ledﬂlemdexofmmmanm 1 end n are called the lower

limit and upper limit of summation respectively.

The sum of the first »# natural mumbsers, the sum of squares of the first # natural numbers and

the sum of the cubes of the first # natural mimbers are expressed in sigma notation as:
14243 +-+n=D k; P+2%4+ 3+t =D B P+ 243+’ =) K

A=l k=1 km]

We evaluate Z [ —(k—1)"] for any positive integer » and we shall use this result

Eml

to find out formulae for three expressions stated above.
Zl:[k" —(E=D"]=(1" - 0")+(2" —1")+ (3" —2") + -

+ =" = (-2 [2" - (nr-1)"]=




i, 36" —(k-D"]=n"

Ekm]

0 gtu,,+b.)=§a.-+§‘,b.

If m=1, then 3 [ —k—1)1=r" ic, Y1=n
E=1 k=1 = n
@ Xas=a e

If m=2, then Y[ #~(k~1) |=n®
k=1
To Find the Formulae for the Sums

® Yk @ Y& i) Y&
k=1 k=1 =1 .
() Weknow that (k—1)* =k*—2k+1 and this identity can be written as:
B -(k-D*=2k-1 (A,

Taking summation on both sides of (A) from k= l_tn n, we have
DI -1 = 3 261

ie., % = Zik—n - g i 1 =n)
k=l ' =1
or 22k= 4n
2 awr)
Thus :Z::lk % 5
Similarly, we can prove sasily
(i) Eﬂ: B .n(n.-j- 1?5(2:: +1) (i) Z I [n{u; 1)]
Eml \ \ Eml

BT 1128 Find the sum of the series 1*+3' +5° +... to n terms,
1';k =(2k-1Y (14 20k =D =2&-1)

= 8% —12k2+ 6k -1
Let §, denote the sum of » terms of the given series, then

5=37

Eml

or 5= (@K -12k"+6k—1)
k-1




O <ue> i
=8> K123 K +63 k-3

1
_ s[u(n;n]’_ 12[4(n+1);(2n+1)]+ 6[»(#;1)]_"

=2n*(n+1) = 2n(n+1)}2n+1)+ 3n(n+1)—n
=207 (n* + 2n+1)—2n(2¢" + 3n+ 1)+ n{3n+3)—n
=2n[(* + 20* + m)—(2n* + 3n+1)]+ n(3n+3-1)
= 2n(n* = 21— 1)+ n(3n+2)

= 2n(n® —2n— 1)+ n(3n+2)

— 20 —4n—2+3n+2]

=n[2n" —n]=n[n(2n" —1)]

=n[2n® -1

Find the sum of  terms of serigs-whose n® terms is n’+%n2+—;u+l.
XTI, Given that '
I;=n3+§nz+ln+l
2 2
R
Thus 1;=k3+5k +§k+]

and-. \S; = i[k’+§k’+lk+1)
=1 2 2

=iE+§it’+iik+i1
Eml 2].'-1 2l-‘l

Eml

_m(m+1)? L3, n{n+1)(2n+1) +lx|:"(n+l):|+n
4 2 6 2] 2

=%[n(n2+2n+l)+(2::z+3n+l)+(n+l}+4]
=E(_n’+2n=+n+zn*+3n+1+n+1+4)

=%(ﬂ’+4n3+5n+6}




LD it <> PG
P’ EXERCISE 6.10 4
. Sum the following series upto » terms.
L 1x3+2x5+3x7+-- (i) 1x5+2x8+3x11+--
(i) 1%2+2%x5+3%8+-+  (iv) 1%3%x5+2%x4X6+3%x5%x7+ -
(v) 1x2%x4+2%x3%xT+3x4x10+--
(vi) 22+ 42+ +- (vi)) ¥+ +9+ .
(viii)4 x12+ T x 24+ 10 % 32+ - (ix) I+GHTHGHTH1) + -
@) 12+124+2H4 (1242243 4. '
2. Sum the series.
M P-22+3—424 +Q2a-1-2n°
P 1F42* £a2ta3

(i) —+ I +... 0 n terms ;
1 2 3
3. Find the sum to » terms of the serics w'haﬂ’e-n“"-m dre given.
) 57 +2n+3 (i) W+2n=3
4, Given n™ terms of the series, find the/auto 2n terms;
() 3n2+5n+2 (i) W+ a —2

6.11 Real Life Problems invelving Sequences and Series

Vehiele Arrival Sequence

Vehicles arrive at a toll booth ai a rate of 4 cars every 5 minutes. Represent the number

of cars amiving over tlmeana sequence and predict the tots]l number of cars sfter an

hour. : '

EXITTTATY, The sequence of car arrivals is:
A 4,8,12,16, ...

This is an 4.P., with

g =4 d=4,n= % =12,4,,=7

Using the formmula for arithmetic sequence
Ay =a1+(ﬂ_1)d
a;; =4 + (12 - 1){4)
=4 + 11{4)
=4 +44=48§
Thus, after one hour there will be 48 cars.




<ui> mamemaces (1
Simple Intercst om Loan (Arithmetic Sequence with Particular Term)
To buy fumiture for a new apartment Tayyab borrowed Rs, 50,000 at 8%
simple interest for 11 years. How much interest will he pay?
Since 8% is the yearly interest rate, we have

Interest after one year = Rs. 50,000 X %XI —Rs. 4000

Tasterest after two years = Rs. 50,000 %xzﬂm 8000
Therefore, we have the A.P.
4000, 8000, 12000, ...
Here, a, =4000, a, = 8000, d =&, —a, =4000, n =11

Using the formula
a, =y +(n—1)d
a;; =4000 -+ (11— 1)(4'_]@)
= 4000 + 10(4000)
=4000 +40000 .
= Rs. 44000
Thus, Tayyab will pay a total interest of Rs. 44000 on borrowed amount of Rs 50,000
after 11 years. '

Compound Interest on Loan (Geometric Sequence with Particular Term)
Ammna invests Rs, 200000 at 5% interest compounded anmually, What
total amount will she pet after' 10 years?
EZTTIT, Let the principal amount be P, Then,
The interest for the first year =P x % = P(0.05)
The total amount after first year = P + P(0.05) = F(1 + 0.05)
The interest for the second year = P(1 +0.05) % 0.05
The total amount after second year = P(1 + 0.05) + P(1 + 0.05) x 0.05
=P(1 +0.05)(1 + 0.05)
= p(1 +0.05)
Similarly, the total amount after third year = P(1 + 0.05)°
Thus, we have sequence of amounts
P(1.05), 1,057, P(1.057, ...
which is clearly a G.P., with
&, = F(1.05), r=1.05, n =10, a,, =7




Lus> menncs (|
Using the geometric sequence formula
a,=ar"
a8y =ayr'd!
= F(1.05) x (1.05Y
= (200000)(1.05)!* o P= 200000
= (200000 1.62889)
=325778.92
Thus, the total amount Amna will get after 10 years will be Rs. 32577892
Grid Column Distribution (Arithmetic Series Sum of Terms)
A web designer is using a 12-column grid system where each column
increases in width by 10px from the previous one. The first column width is 50px wide.
Find the total width occupied by all 12 columns. '
st oy This follows an arithmetic series with:
First term = &, = 50, Common difference =d'= 10
Number of terms = =12
Using the formula for the sum of an arithmetic series:

A= 5 (20, + (0 1)d]

8, = % [2(50)+ (12 - 1)(10)]

= 6[100 + 110] = 6 [210]
= 1260px
Thus, the total width-of all 12 columns is 1260px.
Motor Vehicle Leasing Using Arithmetic Sequence
A company leases 8 motor vehicle with the following terms:
« The first monthly payment is Rs. 15,000
o  Each subsequent payment increases by Rs. 500 due to inflation adjustments.
s  The lease term is 24 months.
Find:
(i) What is the payment in the 24® month?
(if) What iz the total amount paid over 24 months?
(iii) If the company can enly afford to pay & total of Rs. 400,000, can they
complete the 24-months lease?
(iv) Find maximum months # such that total, payment § < 400,000.




Common difference = d= 500
Number of terms =n =24
() Psymentin 24® month:
Using the formula

a,=a, +(n—1)d
a;, = 15000 + (24 — 1)(500)
= 15000 +23 x 500
= 15000 + 11500 = Rs. 26500
(i) Total payment over 24 months using the formula

n
SI = E(al+n)

= % (15000 + 26500) = 12(4150(]) = Rs, 428000

(iiif) Can the company afford the lease? No, total payments (Rs. 498000) exceed the
budget of Rs. 400,000 by Rs. 98,000.

(iv) Using: §, = g [2a, + (n—1d] < 400,000
Substityting the values:
5 [2(15000) + (4™~ 1)(500)] < 400,000

n [15000 4 250n — 250] < 400,000
#(250n + 14750) < 400,000
250n* + 14750m — 400000 < 0
w459 — 1600<0
Asgociated equation is n” +595—1600=0

o ~59E(59)" ~4(1)-1600)

2(1)
-591+99.4
n= 0T
2
—-59-90.4 -59+994
n= , B=
2z 2

n==7192,n=202

Clearly » = 20 satiefy the inequality.
Bo, 2 =20 is the maximum months such that payment 5§, < 400,000.
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P EXERCISE 6.1

1. A sum of Rs, 10400 is paid off in 40 mstalment such that each instalment is Rs.10
more than the preceding instalment. Calculate the value of the first ingtalment.

2. An investor invests Rs. 150000 at an annual compound interest rate of 6% for 8
years. Find the total amount will he get after 8 years.

3. The populetion of a town is 4084101 at present and five years ago it was 3200000,
Find its rate of increase if it increased geometrically.

4. Determine the total worth of a yearly Rs. 5000 investment after Z\IEMB if the
interest rate is 5% compounded annually. ~O

5. A water tank has a leakage. Each week, the tank loses 5 galll:ﬁsofwaterdugto

the lealage, Initially, mcmnkmmumdmmzmogniaﬁ‘;

@) Howmmygallﬁnsaremmetmkzﬂweekslﬂm?(
(ii) How mamy weeks until the tank is half-full$. N

(iii) Howmanywaaksmﬁlthnmnkism‘
§. A drug company has manufactured 7 ion doses of a vaccine to date. They

promise additional production at a m& 5t 1.4 million doses/month over the next
year. O &/
() How meny doses of the Ficete, in total, will have been produced after a
year? O
(i) Thﬁgenﬂralixmnatﬂaﬂcrﬂ)ﬂﬂ the total rumber of doses of the vaccine
produced. Dm@l{&ﬂmmmnnguf&e variable n in the context of this
pmblm the general term a,
(iii) Fmdths?alueofamnndmtmpretltameamngmwurds
T Atatollb@hl,mﬂnumberofvchmlespaasmgﬂmuughdurmgmeﬁrslmnte
is lﬂﬂaﬁue to road congestion, each minute only 80% of the vehicles from the
previous mimte manage to pass,
(i) Represent the mumber of vehicles passing each minute as a sequence.
(ii) Find the total number of vehicles that pass through in 15 minutes,
(iiiy What is the maximum number of vehicles that can pass in the long rn (as
time £ >)
8. A sumofRs, 5000 is inverted at 8% simple interest per year, Calculate the interest
at the end of each year. Do these interests form an A.P.7 If so find the interest at
the end of 20 years making use of this fact.




4.

10.

11.

7.5

13.

14.

15.

<uss

A machine iz purchased for Rs.20,000. Depreciates at 6% per smmum for the first
four years and after that 8% per anoum for the next six years. Depreciation being
calculated on diminighing value. Find the value of the machine after a period of
10 years.

Two cars starl togsther in the same divection from the same place. The first goes
with unifarm speed of 20km/h. The second goes at & speed of 12km/h in the first
hour and increases the speed by 1 km/h each suceceding hour. After how many
hours will the second car overtake the first car if both care go non-stop?

150 workers were engaged to finish a piece of work in a certain of days.
Five workers dropped the second day, five more workers the third day
and so on. [t takes 10 more days to finish the work now. Fi e number of days
in which the work was complefed. QJ

A radiocactive product has & half life of 5 if the radioactivity level is 68
microcuries after 20 vears. Determine the %hwl of radicactivity.
eloci

An object moving in & line is given an iniffa] Yelocity of 4.5 m/s and 2 canstant
seceleration of 2.5 m/e*. How long will it the object to reach a velocity of
20m/s?

In an integrated circuit with an & Sglmmtnflﬂﬂﬂm,thcmpminﬂm
components decreases from 17% to 14%. Assuming that each temperature
dmeiucnu&adbyad@enaeintheiniﬁalcmmisfhﬂﬂlmufthe
cumntatfuurthmmw

Show that the amomatof a certain sum of money at compound interest of #% per
year for n aGP.

&



Permutations and
Combinations

INTRODUCTION

In our daily life, permutstions and History
combinations play a vital role in counting | Augustin Louis Cauchy
total mumber of possibilitics, aswellasin | (1789 1857) is the father
arrangements and scleotions of objeets, | °f pemmiation.
They are used in many ficlds of science. _
Fﬂfexﬂmple Blaise Pascal and Plerre
In probability theory, permutations de Fermat (1607-1665)
and combinations are used to gave an idea to generate
compute how many times an event | 'h¢ combmations of
CAD oCcur in various scensrios and objectt. \3
to eatimate the odds of winning a

lottery. 'é...l and Leibaiz
o Hrbinkuy demssudfadon T L Aa o

the total numbers of possible DNA:, | ‘eombinatorics.
SEqUeNcEs. A

*  Incompuyter science, these areuised to count the possible number of password.u of
a given length by using some specific chamcters,

»  Moreaver, thege are the important parts of many encryption algorithms to ensure
the privacy and integrity of a data set.

7.1 Fundamental Prineiple of Counting
Danish wants to prepare invitation cards of 5 different
colours (red, blus, preen, orange and yellow) by
changing any of 3 shapes (circle, square and rectangle).
How many cards can Danish make?
The problem is to count the total mumber of ways in
which Danish can make cards. One way to find the solution is by making tree diagram.
Let us discuss another scenario: Danish's father wants to buy a table and has asked his
son to help him decide. He narrowed down his options for manufacturer, types of
material (wood, plastic, glass and marble) and types of shape (circle, square and
rectangle). Find the total mumber of table choices from the above options.
Again the problem is to count the tolal number of ways in which Danish's father can
choose a teble.




m> Matiematics

| Wood Plastic Marble Glss
Square Roviangle| | Square | | |Rectangle] | Square | | [Rectmgle| | Square
Circle Circls Circls

From tree diagram, it is clearer there are 12 choices for Danish's father to buy a table
with ong type of material and one type of shape,
2°8 Way: By multiplying, Danish’s father can find the total number of table choices to
buy a table with one kind of material and shape.
Total mmmber of table choices = Total types of material x Total types of shape
=4 x 3 =12 choices

These examples show that when making a choice involving muitiple stages or
categorics, we can find the total number of outcomes by multiplying the mumber of
options &t each stage.
Statement
Suppese 4 and & are two events, the event 4 occurs in m different ways, and the event
B occurs in n different ways then the total number of ways that the two events one after
another can ocour in m % 7 WayS,

Total number of ways = mn
Proof: Let A= {a,, ay, @, -, a,} and B= {b,, by, b, --- , b, }. Let P denotes the event
that both events A and B occur together then P = {(a, b): a,;€ 4, b€ B, 1<i<m,
1<ji<n} =4 x B. Hence the number of ways in which both events 4 and B can occur
is the number of elements in A % B which is mp.
Thispﬁncip]e canbemendedmthreeormoreevenm For instance, if event 4 can

" Wa By making tree diagram.

thatthreeeventscmoccmalltogethermﬂ:e
product m- n- £

Factorial (})

Suppoge there are four chairs to be occupied by four
students and we are interested in counting all the
possible ways the students can be seated,

To occupy the first chair there are 4 options. For the
second chair, only 3 students remain, so there are 3
options. Simvilarty, for the thitd and fourth chairs, there are 2 and 1 options respectively.

{1760-1826) in 1803
This notation is frequently used 1o




Inthiswa}',wehmtnpcrfunnfuurmdcpcndmtwmtawﬂh4 3,2, andluptmns
respectively.

By the Fundamental Principle of Counting, the total number of ways to occupy all
the chairs is 4.3.2.1 =24

Such problems frequently ocour m daily life, where we have to multiply the first n
natural numbers: 1,2, 3, .-, 5

We call this product the factorial of » and denote it by n! or |n, thus for a natural
number n:

nl or [n=nln-n-2)..-3%1
ForsomemasonweaJsodnﬁneO!=I.MgenmLifnisanqnhmgaﬁveMger,thm
its factorial is denoted and defined as
e if n=0
n(n Xn—2) .. 3211 if n21

For example, 11=1

U=21=2

31=32.1=6

41 =432:1=24

51 =54321=120

61=654:3.2.1 =720
It can be easily observed that

_ al=nn—-1)! for n>1
T Bvaluate [T Evaluste
e 8 B-7-6-5-4-3-2:1
e PN TN ML | Solution 6:3: E;gr(: ?f; =
[FTTTI0 2] Write 87-65 in the factorial o 9.8-7-65 431
form. T B 6543213
E-T-6-5=8'T'i:::;j'2'l=% v 9 _9BT654321
6131 654321321




P EXERCISE 7.1 {4
1. Ewaluate each of the following:
~1010 121 1440 , 2400 (n+2)
O s (i) 3112-3)! W) rar’ sia ) (n+Dl
2. Write each of the following in the factorial form:
W n—n (i) #r—1n—-2)@m-—r+1)
3. Findna, if(n+4)1=3024- sl
4 Mgtr= findx.

+3r Q1! =
1 P
5. vacﬂ:auiTJ'I]L=[|-3-5---(2::-1)(zn+1)]z"
+ 2 B 2O
6. Express as a gingle fraction: {(ﬂ +§§I+{(’:- ll;;[
Thoteamfomdlsnmtmlmadballﬂandfwrbq;;_ﬁ#ﬁfsamcmlorsasthmeuﬂha

balls. Determine menumherofpmsiblcway&lhé'balls one each in a box, can be
placed such that a ball does nnlgolﬂabox of its owm colous?

7.2 Permutations

One important application of the ﬁmdamuntal pmmplu of counting is to determine the
number nfwaysﬂmtnbjmcmbummgedmmdsr

Definition: Anmngnmmtnfﬂlnrpmtofaetnf objects in a specific order is called
a permutation. Number ofpummucns of r(= n) objects taken from a set of n objects
is written as "B, or P(r, ).~

. nl
, (ﬂ =y
According to l'lmd‘ammtal principle of counting:
(i) 'Ihreeﬁnnknufmnthemnhcafmgmdesl 2 and 3 can be
arranged in a row taken all at a time (if books are distinct)
.'Ev:!ﬂ o= =3
a3
(3 3 0!
=31=3.2.1=6 ways
(ii) Number of ways of writing the letiers of the WORD taken
all at a Hme

whenr<n

CEEIEIEC)
oo/a/n/a/m

ECEEIEIE)




1 = Total mumber of things/objects
#= The number of sslected things / objecis

[ !
_ 44 -
(4—4)! o
=41=4-3-2-1=24 ways
Challenge! Da yon knowt

Can you make total number of Tn 1974, “Emo Rubik™ invented a popular
permutations for the “WORD" puzzle, cach tum of the puezle shows a

119 . i ol Mg Gl lous. The

neme of this puzzle is “Bubik's Cobe”.
Theorem: Prove that: "P. =a{n-D(n-2) - (n-r+1)= ( n!r-)"-
n—rj
Proof: As there are »n different objects to fill up r places. I_Sn,'the firat place can be
filled in » ways. Since repetitions are not allowed, so after placing one object we are
left with (n — 1) objects, thus the second place can be filled in (7 —1) ways. Similarly
the third place can be filled in (71— 2)ways, and so on. This contimues until the »* place
which can be filled in #—(r—1)=n—r+1ways. Therefore, by the Fundamental
Principle of Counting, rplaces can  be filled by ndifferent objects in
{n—1)}n—2) .- (n—r+1)ways.

P =nn—-N(n-2)..(n-r+1)
_ mn—D(n-2)(a—r+1)n-r)l
{n—r)}

ap Al
-
How- many different 4-digit numbers can be formed out from the
digits 1, 2,3, 4, 5, 6, when no digit is repeated?
The total number of digits = 6
The digits forming each mumber =4
So, the required mumber of 4-digit numbers is given by:
6! 6! 6:5-4-3-2-1
p,= {6—4)1=§=—2.1 =6-5-4-3=360
IZ5 05| In how many ways can a sel of 4 different mathematics books, 3 different
physics books and 2 different chemistry books be placed on & shelf with a space for 9
books, if:
(8) all the books are kept without any restriction.
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(b) &l the books of the same subject are kept together.

(¢} only the mathematics books are kept together,
Solution

restriction.
Tota]l number of books =4+3+2=90
FEEEZEEE[EE o
* — i aa—1) .32 1=nl=—
’I-; =01 = 9.8.7.6.5.4.3.2.] ©" Ve
= 362880 ways
(b) all the books of the sams subject are kept together.
4P;. "P,' ; 1.!"',. 3}3 =413 213}
=24-6-2-6
=1728 ways
(c) only the mathematics bocks a:rekept tﬂgﬂthﬂr'
‘P.°B=416

2720 m l‘iﬁ
=17280 ways l_%]‘“ﬁ(#

InhuwmanywaysS_pmplaaretohesutedonabenchif:
(a) theraarenomu'ictiuns N

(b) two people can sit next to-each other

(c) two people cannot. nr['nexttu each other.

Al B[ cfij DI EFT

() when thgrg:ig_'_np restriction, then Ao Fo REl Fd e
Nuimber of ways = °F, = 5!=120 STl

(b) :rtilh:t'ﬂ:;lpenplecansitnexttoeach — Aand B is considered as | unit
’ AT+B[T| ¢7 DT B[
='5.’R |:?‘ i;:'} Fr R

L4 L1 L1

=4[.21=24.2 2I|_V_|W5dfﬂ 2 3 4
= 48 ways

(¢) when two people canmot st next to each other, then VSR 4
= *P, — [2 can sit next to each other]

=51-48=120-48 ehsae
= cannat sit naxt o cach othar?
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1.
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15.

P EXERCISE 7.2 _d
Ewvaluate the following:
® “B (i °7 (i) "B (i) "B
Fingd the value of » when:

G "P,=504 (i) “P,=15-14-13.12. 11 (iii) "P,:*~2P,=540:1
Prove from the first principle that:

@ "Pr=n-"'P () "Pr="'Pr+r-*'Pra

How meany words can be formed from the lettem of ﬂ]efo]luwing@h'dﬂusing all
letters when no letter is to be repeated:

() PYTHON (i) NETWORK (i) GOME‘gE?ER

How many signals can be given by 6 I]aguofdlﬂ’srenl.tzl , nsing 2 flags al a
time?

How many signals can be given by S flags of di t colours, when any number
of flags are used at a time. \?-.

How many 4 digit oumbers can be fut@“th distinet digits, with each digit
odd?

How many numbers between 10 AD0D can be formed by using the digits
0,1,23,4, Swilhuutrqaetmoqi\ many of them are divisible by 57

Fmd the mumbers gmater than 35000 that can be formed from the digits
1, 2,3, 4, 5, 6, without a:n}rdlgﬂ.

Fingd the number of 5-gigi g that can be formed from the digits 1, 2, 4, 6,
B(whmnnmgltm ted), but

@ thed:gm-z@ are next to each others;

(i) thedi ‘and 8 are not next to each other.

How A-digit numbers can be formed, without repeating any digit from the
digi 12, 3, 4, 57 In how many of them will 0 be at the tens place?

How many 5-digit multiples of 5 can be formed from the digits 2, 3, 5, 7, 9, when
no digit is repeated.

In how many ways can 8 different books including 2 on English be arranged on a
shelf in such & way that the English books ave never together?

Find the momber of arrangements of 3 different books on English and 5 different
beoks on Urdu for placing them on a shelf such that the books on the same subject
are together.

In how many ways can 5 boys and 4 girls be seated en a bench so that the girls
and the boys occupy aliernate seats?




—
7.3 Permutatmn of Objects Not All Different

Suppose we have to find the permutations of the letters of the word BITTER using all
the letters. The word BIT, T.ER consists of 6 different letters which can be permuted

among themselves in 6! ways.
We can see that all the letiers of the word BITTER are not different. It hag 2Ts in

The replacement of the two T, by T, \’2'-' W!YK'/
and T, in any other permutation will

give rise to 2 permutations, Hmmﬁﬂ’hnhjm{mm"zm
Henee, the number of permutstions of RABECHR Sk SRR %ﬂhnwmmuf
¥ ﬂnrdkind,lhnnlhn ber of pamutations of 7
theh?ttnmofthewurdBI'ITERtkaall objects taken all at.& time is given by:
at a time. Toat _[ n
6l 6:-5-4-3-2-1 N ot lan
e X =360 ways | A gty n, A, 0
[E¥T I 7| In how many ways can the letters.of the word MISSISSIPPI be arranged
when all the letters are to be used?
[ZOTTTT, Total number of letters in the word =11
'MISSISSIPPI
1is repeated 4 times = 4! ways
S is repeated 4 times = 4! ways
P s repeated 2 times = 2! ways
M comes once only = 11 ways
111

Rﬁl‘ﬁradﬂmﬂfmhﬁﬂﬂﬂ = m = 34650 Ways

) Note:
Circular Permutations - -

The permutations in which the object each other and considered 4

are arranged in a circular order are same when anticlockwise
known as circular permutations. ﬂmidmhul.

Circular permmitations can occur in tTwo cases:
Case-I: When clockwise and anticlockwise arrangements are considered different

In a linear arrangement, changing the order of objects results in a new arrangement.
However, in a circular arrangement, rotating the entire circle does not produce & new,
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Forexample, supposeﬂ:mepeopleA,Bandemthng around a round table. The
following three linear armangements

A-B-C,B-C—Aand C— A—B are considered the same in circular permutations
because each one is simply a rotetion of the other.

We conclude that:

3 linear permutations gives 1 circular permutation.

3! linear permutations gives — 31—_— =2| permutations.

Generalizing the above ldeaﬂnubjemmanmgedmacuﬂe,themberufdisﬁnm
1
circular permutations is E=(r.!—l)!.
a

Case-Il: When clockwige and unticlockwise arrangémients are considered
identical

In meny real-life situstions, a circular pmmmlﬁnn snd it mimor image are not
considered different.

For example, if three beads red, blue, and black are arranged in a ring, then an
arrangement and itz reflection (as shown in the figure) are considered the same.
In such cases, we divide the total number of circular permutations by 2 to eliminate
synmmetrical duplicates.
Thus, in this case the mumber of distinet circular permutations is: © o
(a-1)! © 0 ©
2
In ligw many weays can 4 persons be scated at a round table, while:
(i) clockwise and anticlockwise orders are different
(ii) clockwise and anticlockwise orders are identical.
LetA,B. C and D be the 4 persons.
@ If clockwise :md anticlockwise orders are different
According to Case-1
The possible number of ways are:
= (n—1)! ways P e e
DA 8 T T s T Wi B e
=321 =6ways. pE AR PR P ALY Tan~ 7




(i) Ifclockwise and anticlockwige orders are identical
According to Case-IT

'I'ha:;lncuasilult:«ltl.m.ﬂ:mm'l:r.’t‘Wit:,fsm't:—ﬂ (Q} IQ/?}

_ 411 _
2 z

Ny

P EXERCISE7S 4 O

1. How many arrangementn of the letters of the fnﬂmngwm@mkﬂna]ltogethnr
can be made?

(i) PAKISTAN (ii) CURRICULUM (ni)z ILITY

2. How many permutations of the letters of the word "BANANA" can be made, if
B must be the first letter in each arrangement

3. How many arangements of the letters offhe TRIGONOMETRY can be
meade, if each arrengement begins with T and ends with Y?

4, Abdullah hes a collection of 9 3 comsisting of 4 identical red marbles,
3 identical blue marbles and 2 id: green marbles, If he wants 1o arrange all
of them is a siraight row, how 8 y distinct arrangements are possible?

5.  In how many different way, e following persons git arcund & round tehle?
(8) 8 persons - ) 7 persons {c) © persons

6. In how many ways cge couples sif around a round table if no two women are
sitting together? | (/)

7. How many 6-digitoumbers can be formed from the digits 7,7, 8, 8, 9, 97

8. 15 member!ﬁ}a club form 4 commitiees of 3, 5, 4 and 3 members so that no
memb 4 member of more than one committee. Find the number of
60 .

9. The D.C.Os of 11 disiricts meet to discuss the law-and-order situation in their
districts. In how many ways can they be seated at a round table, when two
particular D.C.Os insist on sifting together?

10. The Governor of the Punjab calls a meeting of 14 officers. In how many ways can
they be seated at a round table?

11. Fatima invites 14 people for a dinner. There are 9 males and 5 fomales who are
seated at two different tables. Guests of one sex sit at one roumd table and the
guests of the other sex sit at the second table. Find the number of wayg in which
all guests can be seated.
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12. Find the momber of ways in which 5 men and § women ean be seated at a round
table in such a way that no two persons of the same sex sit together.

13. In how many ways can B keye be arranged in a circular key ring?

14, How many necklaces can be made from 10 beads of different colours?

74 Combinations

Suppose, a teacher usea the names of few sudents to make s team for & writing

competition, Such as Ahmad, Sans, Hamza and Danigh. As a combination of team

members, (Ahmad, Sana, Hamza and Danish) is equivalent to (Hamza, Ahmad, Danish

and Sana ). Becanse same students are in the combination. Consequently, you have the

same team becanse the order of the name of Ahmad | Sana. ﬁ : o | Danis!

the students does not matter. i Y 3| Danish | Sana

So, we are interested in the membership of the —

teamandnntmthswayslhemdentsamhsted(amged)

Definition

A combination of r objects taken out of n ob]ectslaa subset of r objects of a set of n

objects.

The number of combinations of # diﬁ'efm;:bjmtstakmrataﬁmeisdemtedby *C,

urC(n,r)or[ ]andlsgvenby C.,.—
Theorem. Prove that "C, = — nl

Jrli(e—-r)t

Proof: Elements of & subset of r objects of a set of » objects can be amranged among
themselves in r! ways. So, each combination will give rise to r{ permutation. Thus,
there will be *C;x+l permuiations of » different objects taken r at a time that is:

rl (n r)T

*Crx ﬂl'%npr
n! n!
= Cxrl = aH "= ————
{n—r)! rl(a—r)!
Which completes the proof.
Coroliary:
(.) 1f7=n. then _ nl _ n! =1 mm.‘ﬂm -Cr are alao
L F=" 2Ca H](ﬂ—ﬂ)[ al Q! known a8 ouunhng - formulae.
Because, they are wsed o count the
nl I poszible rmmber of ways without

(i) If »=0,then "Cy=

0! (m—0)] O!n! Sy e




7.4.1 Applications of Combination in Real Life

Zain has § different fruits. He wants to select 5 fruits out of 8 fruits to
make & fiuit chat. How many combinations of fruits he can select?

To solve this problem, we have to find the mymber of combinations of 5 fruits
out of § fruits, In this situation, s=8 and r=35.

'C = n!
ri{n—r)!

After putting values

" 8l 8!

5T 5H8-51 513

_BxTx6x5! BxTx 6

I - TR o S

=8x 7=>56 ways
Zain has 56 different ways to select 5 different frnits 7o make a fruit chat.
In & school, a class consists of 12 girls and 8 boys. The teacher wants to
sclect 5 students for an activity. In how many ways can the students be selected
including? (i) 2 girls (if).'S boys (iif) 2 boys
Number of gitls = 12 s

Number of boys = §
(i) Now let’s find the total number of ways to select students
when exactly 2 are girls.
v ay _ 120 BY (12.11-10! 8-7-6:5!

R TITT 35t 2.100  3.2.1.51
(if) Let’s find total number of ways to select studenis when exactly 5 siudents are boys.
VT oag . B _ B _BT6Sl o
51{(B-5)! 5131 513.2.1

(iil) Let’s find total number of ways to select students when exactly 2 siudents are boys.

sz 81 121 876! 12:11.10-!

@ STne we 26 3210
74.2 Complementary Combinations
Theorem. Prove that: *C,="C,—
Proof: If from n different objects, we select 7 objects then {# — r) objecis are lefi.
Comeaponding to every combination of » objects, there is 8 combinstion of (# — 7)

3696

=36960




o'bjeuta andvme versa. Thus, the number of combingtions of n objects takenrntatlme
is equal to the umber of combinations of # objects taken (7 — r) at & time.

"G ="C,. LT

= nl .

{(n—nl(r—mi+r}! *C, when r> ot

o B For example,
”CH=-Z(H—?)I L T 0 =ucz=ﬂ2)'z(li)l=ﬁ.n=ﬁﬁi

m "¢ and"C,_, r known ss complsmeniary combinatigns, )

1| Find the number of the diagonals of a 6-sided figure.
A 6-gided figure has 6 vertices. By]ommgmytwnvmhces,wcgetahnc
segment,

: ; 6! .
Number of 1 ents=5C; = —— =15
SRR ©= a4
But thege line segments include 6 sides of the figure
number of diagonals = 15—-6= 9

Differsnce between permutation and'combination

Permutation r:j\ i Combination
* Order is important. T e  Order is not important
e.g., ab and ba are different, (because ¢g, ab and ba are same
order of any object is matter) {because order does not matier)
* Armangement of objects » Belection of objects
e.g. arrangement oi: e.g. selection of:
* ball of different colours *  different colours
* English-alphabet (letters) * members in a team
* people while siiting on chairs ® food items

Application of Permutsations and Combinations in Cryptegraphy

BT al12| Zain wants to generate a passwaord for his laptop to secure the data. He
can take only 6 characters to generate a password. Each character can either be an upper
case letter (4 — Z) or digits from (0 - 9).

Can you tell how many passwords can be generated by using the sbove letters and
digits:

(i) ifrepetition of characters is not allowed

(ii) if repetition of characters is allowed




mmumme.mm.um <136> Hlﬂtmﬂm
Sohution Total number of letters = 26

Total number of digits = 10

Total number of letters and digits =26 + 10 =36

n = total nmnber of characters = 36

r = required number of characters = 6
(i) Ifrepetition of characters is not allowed, we find out total possible permutations as,

np % 6! 36!

== 6T (36-6)l 301
_36-35-34-33-32-31-30!
- 30!
=36-35-34-33-32:31
=1,402,410,240 ways.
Hence, 1,402,410,240 passwords can be generated by using the 26 alphabet and 10
digits. (If repetition of the characters iz not allowed)
(i) If the repefition of the characters is allowed. Using fundamental principle of
counting:

The total number of possible combinations = 36 x 36 x 36 x 36 x 36 x 36 = 36°
Hence, 36° passwords can be generated by using the 26 alphabets and 10 digits, If
repetition of characters is allowed.

Application of permutations td estimaie the odd of winning the lottery.
A box contains 15 cards from (1 — 15). Danish is to select 5 cards. If all
the sclected cards are the first five multiples of 2 then Danish will win the game, Find
Danish's chance of winning the game, when

(i) order is important (i) otder is not important
n=1:0‘|:a1 number of cards = 15

r = required number of cards =5
(i) When order is important,

15!
(15-5)!
15!

=251 360, 360 ways

Total possible ways="P = “E =

1
360, 360

Hence, Danish’s chance to win the game = = 0.000002775




(i1) Whennrdsnsnotlmportant
1 = Total number of cards = 15

r = Required number of cards = 5§
15]
5115—5)
15! 15x14x13x12x11x 101
5'10' 5. 10!
_15x14x13 x12x11
T Sx4x3x2xl

Total possible ways = "C, = 'C, =

=3003 way=

Hhmaﬂmmm%dmmemwm&wmmm—Eéﬁ—ﬂmnﬂ

Application of Peyrmatstion and Combination to chme different sety of songs for
Cr:rlnm Oceasions
4| On Independence Day, a D) has alistoften different national songs. He
wanIs to select any five national sengs for Thg day. Find how many ways he can select
and play the songs.
(i) if the order of playing the songs matters
(u) if the order of playing the songs does not matter
(1) When order matters
n = fotal number of national songs =10
r = requited number of national songs =5
Total rumber of ways="P = B
e N |
@o-s! s
Hence, the DJ van play the five national songs in 30,240 different ways.
(ii) When order is not matter
n = total number of national songs =10
r=total number of selected national songs =5

= 30,240 ways

10!
Total number of L (T o N e
- o RIAE = s T Si0—-5)!
101
= =252
51.51 o

Hengce, the DJ can play the five national songs in 252 different ways.




10.

Il

12,
13.

14.

15.

16.

PV~ EXERCISE 74 _{
Evaluate the following;
® G @ ™c, i) “C, (iv) G,

) ¥ *C,:"C,=15:1,findn. (i) i “P. =120and *C, =20, find r.
Find the values of n and r, when

() "C,=56,"P,=336 @) *G "G —=1:13:7
Prove that (i) "C. + "C., ="'C, (@) r C.=(r— r+1)"c,._1\b

Prove that product or r consecutive intergers is divisible by
In how many ways can five subjects be sclected out ot Q%h_]ects to select a
course programme?

Find the number of possible arrangements of luttm from the English
alphabet? ‘Y\.’k

In how many ways 3 dishes of Desi fon&\ d 2 dishes of Chinese foods be
gelected from 6 dishes of desi foods md:Slgisheu of Chinese foods?

From a standard deck of 52 playi %m theve are 26 black cards and 26 red
cards, How many different Wﬂ}’l;gﬂlsﬂ cards be selected if' 3 are black and the
remaining 5 are red?

A bag contains Erudballu{hd 7 green balls. Find the total number of possible
ways in which five ba]&%% gelected in a way:

() 3redand2 (ii) 1redand 4 green

(iii) 4 red and (iv) all the red balls

How man ‘di@mal: and triangles can be formed by joining the vertices of the
polyg ving 15 sides.

Find ber of sides of a polygon if the number of its diagonals is 104.

How many trisngles can be formed by joining 15 poinis, 6 of which lie on the
aame straight line?

The members of & ¢lub are 10 boys and 8 girls. In how meany ways can a
commitiee of 6 boys and 3 girls be formed?

How many commiftees of 7 members can be chesen from & group of 10 persons
when each committee must include 2 particular persons?

In how many ways can a cricket team of 11 players be selected out of 17 players?
How many of them will include a particular player?




18,

19,

20.

There are 6 men and 8 women members of a chub. How many commiittees of seven
can be formed:

(i) with3 women (ii) with atmost3 women (iii) with at least 5 women
There are three sections in a question paper; each section has 3 questions, A
student has to solve all 5 questions, choosing at lcast one question from cach
gection. In how many ways can the student make his choice?

Consider a cryptographic system that generates an 8-character password. Each
characier in the password can be either a lowercase letier (@~f).or a digit
(0-5). How many passwards can be generated if each pauw@hnum contain

exactly 5 lowercase letters and 3 digits: \Q
(a) with repetition allowed -1_~H

On Defense Day, Teacher 1 compiles a list of H)distingt national songs, while
Teacher I prepares a separate list of 10 differes ional songs (with no overlap
between the two lists). The principsl needs tb.select 3 songs from Teacher T's list,
and 3 songs from Teacher II's list. />

Determing the number of pmmblﬁﬁiﬂhnn methods when:
(i) the order/sequence of the n],;&ndsungs is important,
(i) the order/sequence 'ofrgl{éalacted songs is not important.
"6.\
O
&

@
Cy

S



Mathematical Inductions
and Binomial Theorem

INTRODUCTION

Francesco Mourclico (1494-1575) devised the method of induction and applied this
device first to prove that the sum of the first n odd positive integers equals »°. He
presented many properties of integers and proved some of these propetties using the
method of mathematical induction. In theoretical computer science, 1t bears the pivotal
role of developing the appropriate cognitive skills necessary for the effective design
and implementation of algorithms, assessing for both their correctness and complexity,
We arg aware of the fact that ¢ven one exception or case to a mathematicsl formula is
enough to prove it to be false. Such a case or exeeption which fails the mathematical
formmla or statement is called a counter example.

The validity of a formula or statement depending on a variable belonging o a certain
set is established if it is true for each element of the set under consideration.

For example, we consider the statement S(n)=n"—n+41 is a prime number for
every natural number . The values of the expression 7> —#+41 for some first natural
numbers are given in the table a8 shown below:

» |1/l 293/ 4|5 | 6| 7|8 910|111
S(m) 41,43 | 47 | 53 | 61 | 71 | 83 | 97 | 113 | 131 | 151

From the table, it appears that the statement $(7) has enough chance of being true, If
we go on trying for the next natural numbers, we find » =41 as a counter example
which fails the claim of the sbove statement. So we conclude that to derive a general
formula without proof from some special cases is not a wise step. This example was
digcovered by Euler (1707 — 1783).

Now we consider atother example and try to formulate the result. Our task i to find
the sum of the first n odd netural numbers. We write first few sums to see the pattern
of sums.




1 1=1
2 1+3=4=27
3 1+345=9=3%
4 1+3+5+7=16=4?
5 1+3+5+7+9=25=75?
6 14+3+5+74+9+11=36= 6"
The sequence of sums is (1)%,(2)%,(3)%.(4), ...
We see that each sum is the square of the number of terms in the sum; So the following

statement acema to be true.
For each natural mumber n,

1+3+5+--+(@r-1=n* ...(Q) o “pterm=142(n-1)
But it ig not possible to verify the statement (i} for each positive integer n, because it
involves infinitely many calculations which never end.
The method of mathematical induction is used to avoid such situations. Usually it is
used to prove the statements or formulae relating to the set {1,2,3,...} but in some cases,
it is also used to prove the statements relating to the set {0,1,2,3....}.
Hypothesis: A hypothesis is an educated puess or proposed explanation for a statement
based on limited evidence. It serves a8 a starting point for further investigation and can
be tested through experiments and observations. In scientific research, a hypothesis is
usually framed as a statement that can be tested and either supported or rejected by
data.
Induction of Hypothegis: Tt refers to the process of formulating & general statement
or hypothesis based on specific examples or patterns observed in particular cases. This
technique is'ofien employed in mathemntical reasoning to propose conjectures that
can later be proven rigorously uging deductive methods.

8.1 Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

If a propositicn or statement S5(z) for each positive integer » is such that

1. Base Case: S(1) is true g, S(n) strue forn=1.

2. Imduction of Hypothesis: S(k+ 1) is true whenever 5(k) is true for any positive
integer k.

3. Conclugion: S(n) is true for all positive integers.




<> rarneuncos (1

Procedure for Induction of Hypothesis

s Substituting » = 1, show that the siatement is true forn = 1.

« Asgsuming that the statermnent is true for any positive integer &, then show that it is
true for the next higher integer,

For the second condition, one of the following two methods can be used:

Sk + 1) is proved using S{k).

S(k + 1) is established by performing algebraic operations on $(k).

Use mathematical induction to prove that 3+ 6+9+._+3n=@ for

every positive integer .
Let 5{(n) be the given statement, that is,

Sn): 3+ 6+4+9+..+3n= w

Base Case: Whenn=1, S(1):3 = M%i Thus S(1) is true Le.; The base
case is satisfied.
Induction of Hypothesis: Let us aasmr_l_s_ﬂjnt_ﬁtn) ia true for any n = ke N, that is,

S(): 3+6+9+..+3k = —3"{’; b (A)
The statement for m = A+1 becomes
34649+ + 3K +IEF]) = 3(“1)[(2"”1)*1]
_ Xk+1Xk+2)
_ (B)

Adding 3(£1) an both the sides of (A) gives
3+ 6F0+ ... +3k+3 (k1) = W+3(k+l}

= 3{1;+1)(;+1)

_ kD2
- 2
Thus S(k+ 1) is true if (%) 18 true,
Conclusion: Since both the conditions are ratisfied, therefore, S{n) is true for each
positive integer ».
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_ 2| Use mathematical induction to prove that for any positive mteger n,

P+2* 4+ +..+n =w

FIITTENE Let S(r) be the given statement,

Snk P +2* 43+ 4+n* = ,,(n+1.‘:5(2n+1)
Base Cases L =1, 50); (07 = 2 = 2 <1, which s e, Thms

8(1) is true, i.e., The base case is satisfied.
Induction of Hypothesis: Let us assume that S(%) is true for any k< N, that is,

SE): 2+22 43+ 4k = w @A)
S+1): P42 +3 4ot B+ (417 = (*+1K"+1’;1)(21f+1+1)
_(k+D{E +f) (2k+3) ®)

Adding (k+1) to both the sides of equation (4),, we have
P+2+3 4.+ B+ (B+ 1P -.=-IW+(&+I}z

_ (R+D[K(25 + 1)+ 6(k+1)]
_{k+D(2%* +2+ 6k+6)
=(k+1)(2k’j-7k+ﬁ)
_ &+ 1)k fZ](2k+3)

6

Thus, formula helds for &£+ 1.
Conclusion: Since both the conditions are satisfied, therefore, by mathematical
induction, the given statement holds for all positive integers.

B3 3] Show that 5 +2" represents an integer Vne N.

Solution P P y=2" *"”“eznew

1 +2(1) _
3

Base Case: Whenn=1, §(1)= =1le Z. The base case is satisfied.




Indncﬂnnnfﬂgrputheﬂl. Let us assume that S(») is itve for any n =k € N, that is,

o +2.E
S(k) = represents an infeger.

Nowwewanitﬂ show that S(k + 1) is also an integer. Form = £ + 1, the statement
becomis

SE+T) = (F+1y +2k+1)
3

_ 387 +3k+1+2k+2 _ (K°+2k)+ (38 +3k+3)

3 3
3 2 i

_ & +2)+3k"+E+]) _ K +Z}+(k’+k+1)

3 3 3
B +2k, g . 2 . .
As is an integer by assumption and we know that (8 + & +1)is an integer as

ke N. S(k+ 1) being sum of integers is an integer, Thus statements holds for k+ 1.

Conclusion: Since both the conditions are satisfied, therefore, we conclude by
3

mathematical induction that ;2"

values of m. _

[ATENIT 4] Use mathematical induction to prove that

represeuts an integer fior all positive integral

3435435+ 435 = 35: D , whenever # is non-negative integer,
EXITTTIN, Let S(n) be the given statement, that is, The dot () between two
(5™ 1) mumbers  smnds  for
S(m):3+3-5+3- 5+ 4357 =23 7 multiplication aymbal.
1 —_— —
Base Case: Forn =0, 5(0):3-5°= w or3= =0 3

Thus S{0) is true i.e., The base cage is satisfied.
Induction of Hypothesis: Let us assume that S(k) ia true for any ke W, that is,
35 -1)

85(%):3+3 5435+ +35 = 2 (A)
Here § (k1) becomes
(sipel
SEH)3+3 5435 4o 43. 55 13,57 EM
35" -1
- @

4
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Adding 3.5"'on both sides of (A), we get
3(5h -1

34+3-5+3 5 et Ju 5t 3. 5%1 = A7 T, g g4
=3(5'°+‘-1+4.s‘+‘)
4
_AsHa+ -1 35+ -1)
4 4

This shows that S{(% + 1) is irue when S(k) is true.
Concinglon: Since both the conditions are safisfied, therefore, by the principle of
mathematical induction, §{z) in true foreach ne W.
Prove that 4"+ 6x —1 is divisible by 9 forall ne N°
Let.S‘(n)beﬂ:egiven statement,

S{r)=4"+6n-1 is divisible by 9 forall ne N
Base Case: Putn=1, S()=4"+6{(1)-1=4+6-1=9"

Which is divisible by 9. Hence it is true forn=1.

Induction of Hypothesis: Suppose the statement is true forn = k. i.e.,

S(k)=4* +6k~1 is divisible by 9 (A)
This implies S(k)=4* + 6k —1="5k for some integer k,
4 +6k—1=9%
Nowpumtan=k+1,

S(E+D) =4 +6(k+D)-1=4-4 "+ 6 k+6-1
=4(9k, — 6k +1)+6k+6-1
=36k — 24k + 446k +5
=36k —18%k+9
= 9(4k —2k+1) (B)
Which is divisible by 9.
Thus S(£) is true forn =k + 1.
Conclnglon: Since both the conditions are satisfied, therefore, by the principle of
muthemsﬁcalinducﬁun,th:giv&nmtemmtismmfuraﬂintcgmn 21.
Use mathematical inductien to prove that
n
Z(Zk l(2k+1) 2n+1

» whenever » is a pogitive integer.




TR <> s
Leté‘(n)bethegivenmmmml,thaiis,

1 #ft

B Z(Zk—l)(2t+l) T2+l

1 1
BAE NG Fora = 1, S(1); E(z& D(2k+1) 2.1+1°

1 1 1 1
- = = —=—
-3 2:1+1 3 3
Thus &1) is true i.e., The base case {5 satisfied.
Induction uf]Iypnthe:h: Let us assume that K#) is true for n = m, thatis,

Yom: Z(ZJ: 1){2k+1) ~Fuil &
HmS(mﬂ)beoomes ),

m 1
St 1) Z(z& 1)(2k+l) 2m+1+(2m+_1](2m+3)
_ m(2m+3)+1 2w +3m+l . (m+1)(2m+1)
(2m+1)}(2m+3)  (2m+1)(2m+3) " (Zm+1)(2m+3)
_m4l_ omtl o m#l
T 2m+3 2m42+1 Hm+1)+1 ®)
This shows that S(k + 1) is true when (%) is true.
Conclusion: Since both the conditions are satisfied, therefare, by the principle of
mathematical induction, §(#) in truc for each ne N,
8.1.1 Principle of Extended Mathematical Induction
Let i be an integer. A formula or identity or statement S{n) for n = i is such that
1. Base Case: 5{i) is true and
2. Induction of Hypothesis: S(k-+1) is true whenever S(k) is true for any integer
n2i.
3. Conclugion; Sf) is true for all integers n2i.
[EFTI 7| Show that 1 +3 45+ --- + (2n+ 5) = (#+3)” for integral values of n 2 2.
Base Case: Let S(n) be the given statement, then for n = -2, 8(—2) becomes,
U-2)+5 = (=2 + 3P ie., | = (1)* which is true.
Thus $(2) is true Le., The base case is satisfied
Induction of Hypothesis: Let the equation be true forany #n = ke Z, k 22, 50 that
SE:1+3+5+ - +(2k+5) = (k+3) (A)




S+ 1143+ 50 AH2k+5)+ Qk+1+5)=(k+1+3)* = (k+4)® (B)

Adding (2k+1+ 5) = (2k + 7) on both sides of equation (A) we get,
1+3+5+ - +(2&k+5)+2k+7) =G+3P+(2Z%+T7)
=BP+6k+9+2k+7
=+ 8k+ 16 =(k+4)

The formula holds for £ + 1.
Concluzipn: As both the conditions are satisfied, so we cenclude that the S{») is true
for all integers n=-2.
Show that the inequality 4” > 3" +41s true, for integral values of 12> 2.
Let S(n) represents the given statement ie., S(p)..4"> 3" +4 for integral
valuess of 222
Base Case: For n= 2, &(2) becomes

5(2): 4" >3* + 4, 1., 16 >13 which is trne;

Thus S(2) is true, i.e., The base case is safisfied,
Induction of Hypothesis: Let the statement be true for any n = k(= 2)< Z, that is

S(k): 45 >3+ 4 (A)
Multiplying both sides of inequality (A) by 4, we et
44% > 43"+ 4)
ar 4" 5 (341)3F +16
or 4% 538 L4030 12
or 4™ 5 3% 4 (- 3*+12>0) ®B)

The inequality (B); The formula holds for £+ 1.

Concluglon: Since both the conditions are satisfied, therefore, by the principle of
extended mathematical induction, the given inequality is true for all integers n22,
BT 8| If a, = 27 + 1, then forn > 1, show that last digit of @_ is 7.
Wewi]lpmve the statement by mathematical induction.

Base case: Forn=2

a,=2* +1=2%+1 = 17. Clearly unit digit is 7.

Inductive Hypothesis: Assume thatq, = 22" + 1 = 10m + 7 where &> 1 and m is some
positive integer.




=27 41=22 1]

=(2")2+1=(10m+6)’+1

= 100m? + 120m + 36 + 1

=100m? + 120m + 30+ 7

=10{10m2 + 12m+3) + 7
Thus, last digit of g, is 7 forall n > 1.
Conchuslon: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, the given statement is true for all integers 2 >1.,
8.1.2 Real Life Application of Mathematical Induction
Mathematical induction iz a powerful method used fo prove. statements that are
formulated for natural munbets. It ig often used i matheraties to justify conclusions
about sequences, series, and other constructs that involvs integer values.
Faris starts a savings plan where he deposits 1,000 rupees into his bank
account every month. Using mathematical induction, prove that the total amount saved
after » months is given by:

S(n) = 1000 x n rupess

where n i8 a positive integer representing the tumber of months.
EMITTTA\Given statement S(x) = 1000  »
Base Case: For #n = 1: After the first month, Faris save 1000 rupees. Therefore, the
total savings after one month is 1000 % 1 = 1000 rupees. The base case S(1) holds true.
Induction of Hypothesis: Assume the statement is true for some positive integer &,
i.e., after k months, the total savings is S{k) = 1000 * k rupees.
Now, prove that the statement holds for £ + 1 months; After k +1 months, you would
gave an additional Rs. 1000, so the total savings becomes: ${&+ 1) = 1000 x £+ 1000
= 1000 x (k +1)Yrupees. Thus, if the statement holds for £, it also holds for £+ 1.
JMMW Communication: Using mathematical induction, we prove that
gaving Rs. 1000 monthly for » months totals 1000 x mrupees.
The base case (n = 1) holds, and assuming it's true for £ months, we show itfor £ + 1.
Thus, the statement is valid for all natural mumbers #, making it reliable for real-life
applicafions.
LEST 11| Al starts a daily exercise routine where each day he increases the number
of push-ups he does by 2. On the first day, he does 10 push-ups. Prove that after %
day, the total number of push-ups Ali has done is #* +97
Hlta Case: For »= 1: On the first day, Ali do 10 push-ups. Total push-ups
(17 + 9(1) = 10. The base case 5(1) holds true.
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Induction of Hypothesls: Assume the statement is true for some pogitive integer k,
i.e., the total mber of push-ups afler k days is S(k) = k> +94.

Now, prove it for £ + 1 days: On the (£ + 1)th day, you do 10 + 2 x & push-ups. The
total after & + 1 days becomes: &+ 9%+ (10+2k)=&* + 2k +1+9%+9

=(k+17 +9(k+1)

The formula holds for S(k+1).

Conclusion: By mathematical induction, the total number of push-ups after » days iz
n”+9n

[BIT012| Suppose you aim to lose weight by redncing your celories intake by 50

calories each week. If you start at 2500 calorics, pmvethntaﬂarﬂ weeks, your daily

mtakem 2500—50n calories.

Bm Case: Forn=1: After 1 week, ym.trim;akc'isZSDﬂ—Sﬂ=245l] calories.
The base case S{1) holds true.

Induction of Hypothesis: Assume the statement igtrue for some positive integer &,
i.e., after k: weeks, your intake is 8(%): 250050k calories.

Now, prove it for £+ 1 weeks: Afterk + 1 weeks, your intake will be:
2500 — 50% — 50 = 2500 — 50(x + 1) calories, The formula holds for k + 1.
Conclusion: By mathematical mdmdm your daily intake after m weekys is 2500—50n

calories,
P EXERCISE 8.1 _J
1. Use mathematical \duction to prove the following formulae for every positive
integer ».

(i) logx®=nlogx, where x is positive
() 2+5+8+..+@n-1)= %(31:+ 1)

(i) 2+@+5)+@+5+B)++ %(3n+ 1)= %(nﬂ)’

(iv) 2+6+18+~ +2x3"1=3"-1

(¥) Ix3+2x5+3x T+ +ax2atl)= nin-+1) (4n +5)

6

1 1 i 1 1

vi + et =1—
) 2 23 axd amaD mel




ol il ol o

10.

11.

12

M=) ety

=r

(vii) r+r 4+ + 7=

Vi) e+ (a+D+(a+2d)+ - +[§+{u—l}d]=%[2ﬂ+(n—1}d]
(x) a,=a,+(n-0d whena,a +d a +2d .. forman AP,
x) a=ar"" when a,er.ar, .. formaGpP.

@ ICH-(HE) o

{xii) The sum of first # odd natoral numbers is #%,

Prove by mathematical induction that for all positive integrl Velues of n
@ #*+n is divisible by 2 (i) s"_zuisdi@mebya

(iii) 8x10" —2is divisible by 6 A\

r™—1

Prove that ir“z = ,whmrnisapo@?mtcgm
= & X

x—yis a factor of x" — y" forall posiﬁ@imhgml values of n, (x = y).
al> 2" —1 for integral values of n?ﬁ{/
4" 53" 4+ 2™ for integral valugs of 72 2.

l+nr<(l+x)" forn22and £5=-1.

Aliza invests Rs. ],ﬂl]ﬂ,ﬂN:ﬁ: a business that promises & 6% retumn compounded
anmually. Prove by mathematical induction that the ameunt of money after # years
is 1,000,000(1 .UQ}%;;I‘\

A bank offers anifivéstment with an annual interest rate ». If 7 rupees are invested,
the amount n years is given by: A(n)=P(1 +r)

Prove by tion that this formula holds for all # > 0.

Sikaridey 8aves Rs. 500 in the first month and increases his savings by Ra. 500
every subsequent month, Using mathematical induction, determine whether his
total savings will reach st least Rs, 12,000 after 24 months.

Prove by mathematical induction that if Ali takes a loan of Rs. 2,000,000 and
pay Rs. 50,000 at the end of each year, the remaining balance after i years is
Ry = 2,000,000 — 50,0002,

If Salman start savings with Rs, 5,000 and saves an additional Rs. 1,000 at the
end of every month, derive a formula S(n) for his total savings afler » months,
Prove the comeciness of year formula using mathematical induction.
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8.2 Binomial Theorem

An algebraic expresgion consisting of two terms suchas e +x, x - 2y, ax + b ete,, is
called a binomial or a binomial expression.

We know by actual multiplicetion that
(a+b) =a* +2ah+h* ()
(a+b) =a" +3a”h+3ab® + 1 (ii)

The right sidez of (i) and (ii) are called binomial expansions of the binomial
a + b for the indices 2 and 3 respectively.

In general, the rule or formmla for expansion of a binomial taised 1o any positive
integral power n is called the binomial theorem for positive integral index .

For any positive integer n,

{g+b) = [;Ja" + [ﬂa"‘*!w[;]g'"ﬁ* + ...+(r: l]a-—(r,-nhﬂ
BerBpeler o

or brefly (a+ h)" = i [n]a""h', where a ﬂﬂﬂ ) are real numbers.
r

Fmi)

The rule of expansion given above is called the binomial theorem and it also holds if ¢
or b is complex. :
Now we prove the binomial theorem for any positive integer », using the principle of
mathematical induction. _
Proef: Let S(n) be the statement given above as (A).

: 1 1
Base Case: Ifn=1, we obtain § (1): (a+58)' = [o]al +(1]0Hb=a+b which is true.
The base case is satisSed.
Induction of Hypothesis: Let ug assume that the statement is true for any n=ke N, then

S(k): (a+b)‘=[k]a‘+[k]a"“b+[kJaHbz+---+( X Ja“""b"1+(k)a*"b'
0 1 2 r—1 r
k 1 k &
+---+[k_Jab"' +[k}b (B)

Stk+1): (a+5)™ = [k;—l} .-,;*+1+(ki" 1) a*xb+[k;r 1] x4

_ [k+1)a"“‘+=xb"“ +[k+lJa"”1x b+ +[k+l)axb* +[k+1Jb”1 (C)
r—1 r k £+1
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Multlplym,g.bnﬂl sides of equation (B) by (@ + &), we have

(a+BXa+B) = (ﬂ+b){[ﬂ}:‘ +G‘},Ha+(2 },Hy e [: l]amrl
(B (2 Joro (]
- [[; },w +[:‘ J@u[i}ﬂh +[ * Jat—wbﬂ
et . W
[ L (s

(o HaolGHE e
(8 e A
ol 2 o L
(a+b)f‘ =[‘t;1)¢'+"+["‘ ;’l]a’m(k;l}:'—lbz 4 om
+(":1j¢s_-—«y+... +[":l]y +[:11 " (D)

We find that if the statement is trus for n = k, then it is YA Y % »
also true for n =k +1. [{:]’ (1 ) [z}(n) .

true for all positive integral values of a,

The following peints can be obaerved in the expansion of (g + b)®

(i) The number of tenms in the expangion is ome greater than its index.

(ii) The sum of exponents of a and x in each term of the expansion is equal to its
index.

(111) The exponent of g decreases from index to zero.
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(iv) Theexponentofbmcreasesﬂ‘omzemtomdgx.
(v) The coefficients of the terms equidistant from beginning and end of the expansion

SCREN

"
(vi) The (r +1)® term in the expansion is ( ]a"’b’and we demote it as 7., ie,
r

ra=(2Jerw
r

As all the terms of the expansion can be found from it by puttingr=10, 1, 2, - , n, 80
we call it as the general term of the expansion.

’ .
BT NI13) Bxpand [%—3] and also find its general term.
a

T, ,, the general term is given by
é & o 2 _ 6
ne( )5 - s
o]
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14| Evaluate (9.9)° using binomial theorem.
(9-9)’ =(10-0.1°
= (10)° +5x (10)* x (~0.1)+ 10(10)° x (~0.1)* +10(10)° x (~0.1)*
+SCOH=0.1)* +(<0.1°
= 100000 — (0.5)(10000) + (10000){0.01) + 1000{~0.001)+ 50(0.0001) — 0.00001
= 100000 —-5000+100—1+0.005-0.00001

= 100100 .005 — 3001 00001
= 95095 .004%9
1
Find the specified term in the expansion of (%x—%) :
() the tem involving x° (i) the fifth term |
(iii) the sixth term fromtheend  (iv) cocfficient of theterm invelving x7!,

11
(i) Let T, be the term involving x*in the expansion of [%x—i) , then

L) h

1l=r 11 Yalt2r
_ (1]_1] 3 A YA = {—l)’-[ . ]321—1., =

zll—r
As this term involves x°, 30 the exponent of x is 5, that is,
11-2r=5-0or —2r=5-11=r=3
Thus T, involves.x’

- il 11-10-9 3°
= (_] e = 5
( )J[ }z“-s TN,

165- 243 40095 s
———— %' = x
256 256

11) g1 11-10-9-8 3
T. = (-1} = M
»=t )[4]2“"‘ 4.3.2.1 27

_11:10-3 27 , 16527 , _ 4455
1 '123”3' 64 ¥ 54”3




(ii1) 'Iheﬁﬂltenn&omtheendtelmmllhave(l]+1) — & that is, 6 terma before it,
It will be (6 + 1) term, that is the 7 term of the expansion,

(_1)6 s+ p 11-10-9-8-7 .gf
2o 5.4.3.2.1 2°

=11x6x? 1 1 _ 7T
1 %32 x 16x

(iv) % is the coefficient of the term involving x~'.

8.2.1 The Middle Term in the Expansion of (& + §)*

In the expansion of (a + )", the total number of terms is # + 1

Case It (n is even) If # 18 even then » + | is odd, so [;—T+l] “term will be the
only one middle term in the expansion. |

A n+3

CaIEII:(uiindd)ifnisnddﬂlenn+liscvunm[ ] a.ndl ] terms of the

expansion will be the two middle terms.
12
12T 016 Find the following in the expansion of [%+%] -
x

(i) the ferm independent of x (ii) the middle term
(i) Let T, be the term independent of x in the expansion of
2
X =0, then
(323

n-(3) ()

12 xlh r --2r 12 r- r
=[r 21H.2_x2 =[r]22 12_113—3

As the term is independent of x, so exponent of x, will be zero.
Thatis, 12-3r=0=>r=4.
12 -11-10-
Therefore,therequiredterst={4)2“"ﬁ“=%-24f

= 1x45 495
24 16
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(ii) Inthis case, n= 12wh1chmev=n,uo|——1—li term is the middle term.

2y = V(2
T, = [EJ(T} [F) Because T;is the required term,

[12];‘ 2° _ 12x11x10x9x8x7 e

6)2° x7  6x5x4x3Ix2x]
_12x11x7 924
- & =%

X b 4

8.2.2 Some Deductions from the binomial expnnamn of (@+b)"
We know that

(ﬂ+bJ"=[:)ﬂ"+[;]a""b+(;)a'“‘b’+u- |
+[:]an-r._bf-|"-.L.+[;:1]ab""+{:)b‘ (4)

(i) Ifweputa=1l,in(A), then we have;

O e e

—1+nb+“(”2! Dyp oy PO it e

|
L2 _ma—= s —r+ D — ) _ ala—1y-An—r—1)
r'!(n—rl!_ ol (m—r)l rt
(i) Puttinga =1 and replacing b by—b, in (), we get
n B n N n 3, =) | s
TGl (o (o
e (Crerlt) e

(iii) We can find the sum of the binomial coefficients by putling ¢ = 1 and
5=1in(A)

oo}
o (LM

Thus, the sum of coefficients in the binomial expangion gquals to 27,




(iv) Puitinga=1 a:ud h=-1, m (A), we have

LT (et
:s[ﬂ'[z;[il'[;zm vt ! Jen (7)o

IS HE ()

If # is even positive integer, then

GEEF-CHEMER-(m) 2

Thus, sumnfuddmefﬁclemsofahmmalexpmmnequahtoﬂmmnnofﬂxeven
coeflicients.

Show that; (r J+2[: )+3[; J+-...'\.;..,','[: )= g1
(;'}z(; Joo§ ) oo 2R 00D

@062, __+1]

= g|l+{n-1)+
[1+6-p

A

P~ EXERCISE 8.2 _J

1. Using bindmiAl theorem, expand the following:

0 [%—xi] @ (20-2] t)[r = }

2. Calculate the following by means of binomial theorem:

@ 97y (i ) (i) (9.98)° @v) @1
3. Expand and simplify the following:
@ (a+v2x) +(a—v25 G (2+v3)+f-+3f

4, Expand the following in ascending power of x:
@M (2+x-x2) @ Q-x+x*)




L 8 i"d the term involving:

13
(i) x*in the expansion of (3—2x)” (ii) x*in the expansion of [x—%)
11 \ 2 ; . 8. _ . 11
(iii) @" in the expangionof | — —a (iv) y’ in the expangion of (x—\/;)
x
6. Find the coefficient of;

10
() x"in the expansion of (x’ —%J (il) x" in the expansion of [.t‘ —L]

10
7. TFind 6™ term in the expansion of (r"' - zi J .
x

8. Find the term independent of x in the following expansions;™"
’ 10 10 4
@ x——ZJ (i) (JI +—11] @) 1+ ;Eﬂ.)f[n i]
x 2x : x2

LS
9. Determine the middle term in the following expafisions:
(1 2Y 3 N ' 1y
) | —— i) | —x—-— | iii) | 2x——
® (; 2] ()[2_;%) @) (2o

n o

8.3 The Binmiﬂal Thenfém (When the Index » is a Negative
Integer or a Fraction)

When n is a negative integer or 8 fraction, then _

n(r;;l) ey n(n—l:)’"(n—z) . .

7 . M W
10. Show that: {l ]+[_2]+[ﬂ }—l——#[ ]:2-”—[

(14:5')"?'='l1+nx+
\ +n(_i;—]}(r.l—2) ...(n—?'+l-)xr e

% rl
providad |x|<1.
. , nin 1y . wn—=I}n-2) . )
The seriea of the type 1—mx+ 2 r — a1 % + - in called the
binomial series.
® The proof of this theorem ix beyond the scope of this book. I}
] Symbﬂi[:}(;).(:]mmmmwhmnhnngg:ﬁuintg'gg:m.
fraction.
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Find the m‘tﬂmm’ﬂlemm of (1+I) 3when|x‘{1
1, - VDD,

_CIY345-042)

12345~ (+2) ,

=1

rl 1-2.r!
— (1 rl-[r-;l)l(r—l—i!)x, =(_1),(r—!—1}2(r—2)x,

Some particular cases of the expangion of (1 +x)%, m <0
(@) Q+x'=l-2+2-F++(Dx"+ :
() +x)?=1-2%x+37 4+, .+ Y+ Dx"

() (142 =1-3x+ 68 —105° + 4 (= 1}*%
(iv) (-2 =l+x+2 +x" + b x + o

(v) (1—2)"=1+2x+3" +4x" + -+ (r+ D + -

(vi) (L—x)° =143x+ 63 +105° + - +m;’+2} e

|B3TEE 19| Find the coefficient of x" in the expansicn of

S, 5 = 0-2) L+ 0
- (o ) 14 2,,)+(2)(3)xz+ DD, 3

=
=+ DIL+ ()2 + (17302 + o+ 1Y % (r+ 1"+ 1]
= (= + DI+ (=D2% + 132 + - + 1P ™+ PG+ Dt -]
Coefficient of x* = (1) (1 n+ (1) (n+ 1)
~ (—1)'1!4-( D*m+D = 1°[n+(r+D] = 1P (2r+D)
20/ If x is 50 amall that its cube and higher power can be neglected, show

-X

(1+ x)

that 1 xml x+1 4
1+x 2
Solution 1_—I=i‘(1—.r.)m(1+.7|:)‘”’
1+x

- 1+%(—:}+M(—ﬂ’+m 1+[—?l]x+(_%J[_li_l] 2 i

2!




11 31 1\, 1,
1| o e mloxt—
(2+2)x+[8+4 s]x foe it

3
Fory%[i} L3 (i]“+1-3-s[i) X

9 ) 222\ 9 23 9
show that 5% + 10 y—4=10
1 3
Solution J"=L[1J—|—E[i) -|-13—5[i] S E -t {A}
219 42! 9 83l 9
Adding 1 to both sides of (A), we obtain .
2 |
1( 4 1:3( 4 1-3-5[ 4.7
1+y—1+?[?}+ﬁ(?] +—E-3!'[TJ + e (B)

Let the series on the right side of (BYbé identical with
n(u—l)x,_l_u i':—l)(i'i:—':!)x:1 o
2! 3]
which is the expansion of (1+ ) for| x | < 1and » is not a positive integer.

1+mx+

By comparing terms of both the series, we get

Y
nn-1) ;013 4Y .
TR 4.21(7) (ii)
From (i), x =% (i

Sl =% SR

n(n—l)(2j=i_ 16 _ a(p-) 4 _3 16

2 (9n

8 81 2 8L 8 B8l

ot 2n-1)=6n orn'—1=3n=>u=—%




oue Ot PPN =
Putting u=—%iﬂ(ﬁi},we_getx= 21 =—
)

2

4 _,_1;1_ 5 =171 ~ 9 1!2_ 3
me (5] - (5] (3] %
or 50+3)=3 @iv)

Squaring both the sides of (iv), we get
514+2p+3)=9 or 5y +10y-4=0.

P~ EXERCISE 83 4 O
1. Expand the following upto 4 terms, taking the values 1n':E xsuch that the expansion
in each case is valid: .
| E
() (+x)*? () (4-3x)"? (i;iy.::g—."'-_‘ . Gy
A0 (4 x) 1-x
2. Find the coefficient of x” in the emunsi"én of:
o 2
() 1+x : (1+ x)

(1+x)* e (1-x

. 2 lfxissuEnmlld:lal.'itssquareahﬂﬁgharpmwmcanbeneglacted,ﬁmshﬂwthat:

1-x 3 ='“’ .. vi+2x 3

l——x il al+—x

Vl+x 2 < Vl-x 2
9+'?x”‘“-— 613V l? . Vi+x 25

ap QEIE A L 1, g (B, B

44 5x 4 384

4, If .I‘i}iﬂqﬂnhllﬂlﬂtlhi cube and higher power can be neglected, show that:

@ #l—x—h-’ml—%x—%x‘ (i) :+xm1+x+%x

—X

la|-lh

()

5. 1Ifxis very nearly equal 1, then prove that px® —gx? = (p—g)x™*?
6. Identify the following series as binomial expansion and find the sum.

(R

1, 13 135
L .
e

7. Use binomial theorem to show that 1+
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1. 131 % va8/1Y . 2 =

. “J"?*E[E‘I*T[ﬂ*'"w‘“—"‘““ A a=y,
. 1 1.3 1 135 1 :

9 W= 44—+ —+——+ —+ ..., prove that 4y° +4y—-1=0

10. Show that the coefficient of ¥'in ——— is 29,

(-pxXl-gx) p-q
8.4 Binomial Coefficients Using Pascal’s Triangle
Binamial coefficients arise in the binomial expansion of powers of a binomial
expression, such as {x + 3}, These coefficients are denoted by:

n nl
= = <
[?’) = r}l,whel'eﬂ_r_n.

Pascal'sTnangle;mvidesauombmatmalmﬂmdtowmpumhmmal cocficients
without directly using factorials. The construction of Pascal's triangle follows these rules:

1. The first row (corresponding to » =0) consists of a single entry:1.
2. Ezach subsequent row begins and ends with 1.
3. Every interior entry is the sum of the two entries directly above it from the

0
1
2
3
4
3
6
7

Maihe:matlcﬂly, this is expressﬁdby Pmal': Rule

A

The entries in the n® row of Pascal's Triangle cotrespond to the binomial

oo )1}

For example, the binomial coefficients corregponding to n =4 are:

AR
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Expand (x + y)* using Pascal’s triangle.
The'binnmia.‘l coefficients for the expansion of correspond to the entries in
the »=4 row of Pascal’striangle: 1464 1
Thus, the binomial expansion using Pascal’s triangle is

x+ )Y =1+ + 6D+ + 1
(+ )t =t + 4y + 62 +4mt +
10 23] Expand (x —2)" use the binomial theorem and using Pascal’s triangle.
EXTTTTM Expand uging Binomial Theorem:
x-2y=3Cox’ (-2)' +3C X1 )+ U2 +5C (- 2P
+3C 5=+ 30 (- 2)
=x—10x'+ 402 - 80 5% + 80 x- 32,
The binomial coefficients for the expansion of correspond to the entries in the
n=>35row of Pascal’s triangle:1 5 10 10 5 1 |
(@t P =Cda " +3C,a* +3C,a P +°C: @ P +35Ca 5+ 3Csa B
Replace binomial coefficient from Pascal trianglesnd a=x, b =-2
-2 = 2P +5 D H 10522 4 10 5= 2 + S (- 2)*+ (- 2)°
=x"—102*+40x* - 80 x° + 80 x—32.
8.5 Applications of Binomial Theorem
8.5.1 Finding Approximate Value Using Binomial Theorem
Approximations: We have seen in the particular cases of the expansion of {1+ x)"
that the power of x goes on increasing in each expansion. Since |x| <1, so
| x ‘r <| JE| forr=2,3,4, ...

This fact shows that terms in each expansion go on decreasing mumerically if |x < 1.
Thus, some mitisl terms of the binomial series are encugh for determining the
approximate values of binomial expansions having indices as negative integers or
fractions.
Sommation of imfinite series: The binpmial series are conveniently used for
summation of infinite series, The scries (whose sum iy required) is compared with
alm—1) o R{=1) (n—2) S

! 3!
to find out the values of & and x. Then the sum iz calculated by putting the values of n
and x in (1+x)".

1+ nx+




Enmple Expand (1— 2x)"*1to four terms and apply it to evaluate (0. 8}“"”
to three places of decimal.

Thiscxpansiunisva]idnnlyifpx‘::l or 2|t[<1 or|x| <= .thatis

2l 31
s
2 3L 3 s\ 3 0\ 3 :
-2 4
TRATEN L 321 %)
2 4 ., 125 1
=R A 1D5 1 g
39~ aan Apir)
o2 4 W,
3 ¥ 9 ¥ gl

Putting x =.1 in the above expansionwe have
T SO
(1—2{0.1)) 1——(0 —— (ﬂ.lf—ﬁ(ﬂ_l.l]- —
et o A s S AB 4 0.001=0.04)

= 1— 0.06666—0.00444 — 0.00049 =1—-0.07159 = 0.92841
Thus (.B)”’su-‘ 928
Alternative method:

(08 =(1-02%=1 “2 1(1 )(-nz;h%[%_ (%_ J(-n.2)3+...

2[
Simplify onward by yourself.
Evaluate 3/30 comrect to three places of decimal.

1
V3= (30 = @7 +3)3

3 173 1 173
= [2‘?(1+—]] =(2‘?)”’(1+—]
27 9
= 3[1+i]
9
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w 3 [1-+0,03704 - 0.001372] = 3 [1.033668] = 3.107004
Thus 330 =~ 3.107

8 5.2 Finding the Remainder Using Binomial Theorem
Using binomial theotem, ﬁndthsrmamderwhmi”m divided by 13.
I, =55 =5 - (7Y°=5- 25"

=5(26-1)¥

) 5[[?} 264,10_[?]26«11+[4;);¢?1*-+;..—(:3)26n1u]
{zs“ [ ]26“ (9)26“4'..-.-1]

=s-2&"—5-[?)25‘" s[ Jzﬁ‘“‘

foas{ghs Jo}

=13k + 8, where k is an integer
Hence, 8 is the remainder when 5% is divided by 12.
[FFT 27| Using the binomial theorem, show that 11— 10 leaves a remainder 1
when divided by 100 for all positive integers n.

=(1+10)" = [;J o’ +[’1’] 10" +[:]1"'*10’ +[:]1"31u‘ + ---+(:J1°10*

1" =1+ 1nn+[:]1nn+[;)mnm et 10"

n = n n L=
1 —lﬂn—1+1I]0|I2J+[3J(10}+---+10 2]
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117 - 10n= 100 x an integer + 1
This show that 11"— 10z leaves a remainder 1 when divided by 100.

8.53 Finding Last Digit of a Number
Using binomial theorem, find the last two digits of the number 1172,
(112 =10+ 1)?

12 12 12 12
= 1012 1%+ 10M 11+ 101012 +. 101114 10%112
(o Jromse (7 rome (5 Jomrt (o (]

The last two digits can be found by the last two terms, because the remaining terms
are the multiples of 100 and hence do not affect the last two digits.

12 1411 l‘?' 12
= + 1=
[11]1{!1 +[12)|0°1 120+ 1=121

The last two digits of 121 are 2, 1.
Hence the last two digits of 112 are 2, 1.
Divigibility Test '
[FTT929| Show that {15) + (13)' is divisible by 14,
I, (15)° + (13 = (14 + )P +(04 = 1)"
= [ISC:} (14)13 -+ l:-lc'1 (14 12 + 1302 (14)11 S BCH]
+ [5G (14)5—15C (14" + BC2 (14)° — - + 5C1a (14) - Cs]
= [BC, (14) + BC1 (14)2 + B0 (14)1 + - BCia(14) + 1
| +15C, (14) - 150y (1)1 + -+ + B0 (14) - 1]
= 14[8C, (14)2 + B 4)! + PG (14)0+ - + By,
+ 5C,(14)"* — 5Cy (14)2 + -+ B5Cu]

= 14k, where 4 is-an integer.

Thus, 14k is divisible by 14.

Comparing Two Large Numbers

Which number is larger 512 or 492 + 507
515 =(50 + 1%

=[2ﬂs](m)ﬂdi ( 1)u+[25](50)m(1)1 ( ](53) (1) [ )(50) (l)

— (50)"* +25-(50)* + 2 24(50),, 25 2 23 2T 22 (50)7 +




Uit ) jeryierimei BT st
Similarly

49% = (50 - 1 = (50)" -25- (50)“

By subtmacting, we get

51— 49% = 2[25 -(50)" + % (50)" +

(Sﬂ)ﬂ 25-24-23

n
B

[(50) m -(50)" + .. ]}50”

= (517 - (49" > 50 = (51)25 > (49)% + 50%

Hence, (5177 is greater than 45%* + 50%°,

Ecnnamlt Forecasting with Componnd [nterest -

A bank offers a compound interest rate ofi%perymr Sumsira invests
Rs 100,000 for 3 years. How mruch will her investment be worth at the end of 3 years?
[T, Using the compound interest fornula, the future value A of the investment

Sy
b

is given by: 4= P14

m) |
Where, P = 100,000 (the principal), » = 0.05 (the interest rate), n = 1 (compounding
once per year), £ = 3 (the time in years)."
Substitute the values: A = 100000(1 + 0.05)" = 1000(1.05)
Using the binomial expansion for (1.05)*:
(1+0.05° = 1 + 3(0.05) + 3(0.05)* + (0.05°
=1+0.J15 + 0.0075 + 0.000125
=1.157625
Now calculate the futire value: 4 = 100000 x 1.157625 = 115762.5
Sa, aﬂaSmﬁeMﬁn&ﬂwﬂlbewanhRs 115762.5.

| P EXERCISE 8.4 _d
1. Using binomial theorem find the value of the following to three places of
decimals: _
. . 3 | . 5 AT
W 9 (i) (.03 (iii) i Gv) N

2. Find the remainder when 8% is divided by 7.

Find the remainder when 2'® is divided by 3.

4, Using the binomisl theorem, find which number is larger:
(i) 19"9+200¢r21% (i) 29'%+30' or 31"

.




.

16.
11.

12,

13.

14,

Using the binpmial theorem, show that:

(@ 57+7°is divisible by 36. (i) (17)+(13) is divisible by 6
(i) (21Y+ (19! is divisibleby20  (iv) (31)'+(29)° is divisible by 30
(v) (101)°+(99)7 is divisible by 100

Using the binomisl theorem, find the remainder when 3'" is divided by B.
Using the binpmigl thegrem, find the last digit of the number (32)*.

Using the binomial theorem, show that 7° — 6 leaves remainder 1 when divided
by 6 for all positive integers n.

By using Binomial Theorem show that for esch ne N, 5" -1 is ;‘ le by 4.
By nsing Binomial Theoram show that for each ne N, 5" -2 visible by 3.
Show that &> + (@ + 2P + (@ + 4>+ 1 isdivisiblebyu,@vcr“a” is an odd
integer. @
Acnmpanyexpecl.uitsmmmlrevenuemgmwataéudmteufﬁ%paym.ﬁe
revenue in year | is R = Rs. 10,000,000, Esti the company’s revenue after
4ymrsusingthehinuminltheumnfursmﬂ‘l\ r rates.

A bank offers a compound interest fate of 10% per year. Zafar invests
Rs, 2,000,000 for 4 years, How m\uz@‘ ig invesiment be worth at the end of

4 years? f\%

Zaidismganizingaaportsnogqﬁ ion with 8 teams. Every team plays against
every other teamn exaclly onge’~How many matches will be played in total? Use
Pascal's tnangle to solve@

&
Q@

O

«;‘$®



Division of Polynomials

INTRODUCTION

Polynomials play a fundamental role in glgebra and have wide-ranging applications
in various felds, including engineering, data science and digital communication. This
unit explores polynomial division to determine the quotient and remainder. The
remainder theorem is introduced &3 a powerful tool for evaluating polynomials
efficiently, while the factor theorem is applied to factorize cubic polynomigls. These
concepts extend beyond theoretical mathematics, finding practical applications in
polynomial regression, signal processing and coding theory. By mastering these
techniques, students will develop a deeper imderstanding of polynomials and their
gignificance in solving real-world problems.
9.1 Polynomial Function
A polynomial in x is an expression of the form
arx +a_x ' +a 3" +..4axr +dzta, (D)
where 7 is a non-negative integer and the coefficients a,,4, .4, ;, .., @, and a;are
redl numberg. It can be conkidered as-a polynomial function of x, the highest power of
% in & polynomial is called the degree of the polynomial. In the expression (i) if
a, # 0 then it is a polyhomial of degree n. The polynomials x* — 2x + 3,
3x + 2x°—5x+4 are of degree 2 and 3 respectively.
Divide the cubic polynomial 32* —10x* + 13x — 6 by the linear
polynomial x — 2.'Also find quotient and remainder.
S W —4x+5
%-2) 3¢ — 107 + 1356
_3x’T '&tﬂ
—4x* +13x
—4x’ + &
Sx—6
_Sx 10
4
Hence, we can write: 3" — 1002 + 132 — 6= (x — 2)(3x* —4x+ 5) +4
So, quotient = 3x*— 4x + 5 and remainder =4,




9 <ifru> Misfhematies
[FTTT 2| Divide the polynomisl x* - 3x° + 53— 7x + 2 by @—x + 1. Also find
Solution xX—2x+2
Poxt+1) A3+ 58 Tx+2
S
2+ 4 Tx
22" + 20 — 2
2% —Sx+2
_2:’;2:1-2
—-3x

So, quotient = x* — 2x + 2 and remainder =-3x
9.1.1 Remainder Theorem
Statement: If a polynomial f{x) of degreen =1 is divided by x—a till no x-term
exists in the remainder, then f(a)is the remainder;
Proof: Suppose we divide the polynamial £(x)by. (x—a) . Then there exists a unique
guotient g(x) and a unique remainder R such that

J@) =@x—alx)+R : &)
Substituting x =4 in equation (i), we get

J(x)=(a—a)(a)+ A

fl@)=RX
Hence remainder = f(a)
BT 3 |Find the remainder without performing division when £(x) =#* +2° + 2+ 1
is divided by x+1.
Hn;c f@E=x*+r+x*+1l and x—a=x+1=>a=-1

Remainder = /(-1) (By remainder theorem)
==+ 1P+ 1P+
=1+¢ED+1+1=2

Find the value of k if the polynomial x°+&x"—7x+ 6 has a remainder
—4, when divided by x+2.
Letf(x)=x3+kxz—?x+6andx—a=x+2,wehave,a=—2

Remainder = f{-2) (By remainder theorem)
= (-2 +k(-2Y - T(-2)+6
=8+4k+14+6

=4k+12
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Given that remainder =—4

4k+12=—4
= 4k =-16
= k=-4
9.1.2 Factor Theorem

Statement: The polynomial x—ais a factor of the polynomial f{x)iff f(a)=0.In
other wordsx —a is a factor of f(x)if and only if x=q i3 the root of the polynomial
equation f{x)=0.
Proof: Suppose g(x) is the quotient and R is the remainder when the polynomial f( x)
is divided by x — g, till no x-term exists in the remainder, then: .

f(F) =G-a)gk) +R
Suppose f(a)=0 = R={0

f(x) = (x—a)a(x)

(x —a) is a factor of f{x)
Conversely, if (x — ) is a factor of f{x), then f{x) ={x ~ a)g(x) for some polynomial g(x)
fa)=0
which proves the theorem,
BT 5| Show that x—2 i3 a factorof £(x) = x" —7x+6 without factorizing.
Hﬁl'ﬂ. flxy=x—Tx+6and a=2
f(D=22<K2)+6 (By factor theorem)
=8-144+6=0
Bo, x—2is a factor of ().
Tndl:hﬂmimifgi@'ﬁnlﬁmpulymmiﬂ I—ahaﬁqmruff[x).wﬁmudhchnﬂk]
whether (@)= 10.

[y 6| B x+1and x—2 are factors of x* + px? + gx + 2. Find the values of p and ¢.
'Lutf(x)=z5+px=+gx+2

Bince, x + 1 is a factor of f(x).

8o, f-)=0 = -l+p—-g+2=0

p—gq=-1 M
Similarly, x—2 is also a factor of f(x).
So, f2)=0

B+4p+2g+2=0

dp+2g=-10

prg=-5 (i)
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By adding (i) and (ii), we have
p=-2
Put  p=-2in(i), we have
g=p+tl=-21+1=-1
9.1.3 Symthetic Division
There is a nice shortout method for long division of a polynomial f{x) by &
polynomial of the form x —a. This process of division iz called Synthetic Division.
To divide the polynomial px’ +gx* +ex+d by x—a

P 4 ¢ d « first line
@ [] [[] «— Secondline

Y2247

‘ ’/IZI ][] < thirdlins'

e ——=—+2=—"24 /
Outline of the Method

(i) Write down the cocfficients of the- dividend flx) from left to right in
decreasing order of powers of x. Insert 0 for any misging term,
(ii) To the left of the first line, write @ ofthe divisor (x — a).
(iii) Use the following patterns to write the second and third lines:
Vertical pattern ()  Addterms
Diagonal pattem { /') - Multiply by a.
If (x — 2) and (¥ + 2) arc factors of x%—13x2+36. Using synthetic
division, find the other two factors,
Let f(x)=x" —13x* + 36
=x*+0%* —132% +0x+ 36

Hetex—a=x-2 = a=2mdx—a=x+2=x-(-2) = a=-2

iy ayaihetio Division:
e 2/1 0-130 36
z 4—13—36
i) 18
-z 0 13|L
T 0 9

. Quotient = ¥’ +0x—9= ¥*—9=(x+3)(x—3)
Therefare, other two factors are (x + 3) and (x — 3).




P EXERCISE 9.1
. Find remainder and quotient by simplifying the following:
M GF-x+2)+(x-1) (i) ('+12x"—3x+4)+ (x-2)
(i) (=" 52 -Bx* +13x+12)+ (x—6) () (5x*—3"+2x" 1)+ (7 +4)
V) (3'—=5x+4x—6)+ (**-3x+5)
2. Use the remainder theorem to find the remeinder when the ﬁrst&\)lynomlal is

divided by the second polynomial.
Q) P+52+6 , x—2 (ii) f+5:2+6\p.@+1
(i) xS+ x4l ,x-1 (iv) x +z‘1+=}1“=\x+3
V) #+x+2, x+2 \

: Uanﬂ:eﬁatmﬂlmmmtudctmnnelftheﬁp}polynmnl is a factor of the
second polynomial.

@ x+1, #-1 {}.{ﬁ) x-2,2-55+6
(i) x+1 , 2 +x*+x-3 Ll"'ﬂ’ "/('w} x=2, B+x*-Tx+2
) x-3, —3x’+f :-t,l
4. Usesynﬂ:eucdivmun w that x i8 the zero of the polynomial and use the
result to factorize thq'pqhmomlal completely.
@ x’—7x+5,\‘=}éﬁz (i) *—28x—48, x=—4

(iii) z:“+'rf;—4x’ —-27x-18, x=2,x=-3

5. Use ; it c division to find the quotient and the remainder when the
polynomm] x* —10x" —2x+4 & divided by x+3.

6. Ifx+ 1andx— 2 are factors of x° — px* + gr+2.Using synthetic division, find
the values of 7 and g.

7. When the polynomial 4x" + 2x’ +ke* +13 is divided by x+1, the remainder is
16. Find the value of k.

B. When the polynomial ¥ +x”+ x+ kis divided by x + 1, the reminder is 7.
Find the value of k.




9. Use factor theorem to find the values of p and ¢ if x+1 and x— 2are the factors
of the polynomial X’ + p® + g+ 3,

10. Use fecior theorem to find the values of ¢ and b if-2 and 2 are the roois of the
polynomial 2° + 4%+ ax+ b,

9.2 Real Life Applications of Remainder and Factor Theorems
In this article, we shall demonsirate how remainder and factor theorems are applied in
different areas such as polynomial regression (used in statistical modeling), signal
processing (used for filtering and ermror detection) and coding theory[umdmdata
encryption and error comection in comumunication systems), These applications
highlight the significance of polynomial analysis beyond theoretical mathematics.
Regression Anslysis: It is a statistical method used to.model the relationship
between a dependent variable and one or more independent variables,

Polynomial Regression: It is a type of regressian analysis where the relationship
between the independent and dependent varisbles is modeled as an #®-degree
polynomial. It is uged when the data shows a curved (non-lineat’) relationship, but we
still want to fit a smooth, continuous fumction. Factor theorem is useful for reducing
polynomial regression degree and remﬂder theorem helps in evaluating polynomials
at glven po:lnts

Consider a data set. of monthly sales figures. A polynomial regression
model P(x)=f+f+2x+1 ig fitted to this data. If the observed sales in the 3%
month are 40 units, find the percentage error.

\Exror = Observed — Predicted = 40 — P(3)
Now, LOPE)=¥+3R23)+1
=27+9+6+1
=43
Error =40—43
=3

x 100

8o, Percentage Emor= ‘3
=7.5%
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Suppose a polynomial regression model P(x)=3x"—4x"+2x—5.If a
data point at x=—1is missing, What should be its predicted value?
By remainder theprem
P(=1)=3(-1) - 4(-1)* +2(-1)-5
=-3-4-2-5
=-14
So, the predicted value of given polynomial regression model at x =—1is —14.
Digital Signal Frocessing (DSF): It is the used in computers or digital devices to
analyze, change or improve signals like sound, images or sensor data. In the context
of DSP, we often deal with systems represented by transfer functions in the z-domain,
denoted as H(z). These transfer fimctions are rational functions, meaning they are
sation of twe polynomials in z Le., H(z)= ig;
polynomial (related to the system's zeros) and 4(z) represents the denominator
polynomial (related to the system's poles).
In zignal processing, finding the roots of the tumerator polynomial B(z) provides the
zeros of the system, If B(z) = 0, then (z — zo) is a factor of B{z). If |z.I=1, this
corresponds to a frequency that the gystern blocks.
Similarly, finding the roots of the defiominator polynomial A(z) provides the poles of
the system. If 4(po) =0, then(z— po) is & facior of A(z). The locations of these poles
in the complex z-plane are crucial for determining the stability of the system. For a
stable system, all poles must lie inside the unit circle (|ps|<1).
A signal processing system has a transfer function with a denominator
Afz) = 22— 0,25, Use factor theorem to find the poles of the system and determine if
the system is stable.
The poles ocour when A(z) =0.
7-025=0
Z—(0.5f =0
(z-05)(z+05)=0
z—0.5=0 orz +0.5=0
z=05
or z=-05

,where B(z) represents the numerator
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and z =-0.5. For stable system, all poles must
lig ingide the unit circle (|z|<1), Here, [0.5] = 0.5 < 1 and |-0.5] = 0.5 < 1, Since both
poles are inside the unit circle, the system is stable,

P EXERCISE 9.2 4

l. Congider a daia get st monthly sales figures, A polynomial regression model
P{x)=x"+2x"+x—3 is fitted to this data. If the observed sales in the 5%

month are 240 units, find the percentage error. \JC‘
2. A remiler company has developed a polynomial regression mjodel to prediot
weekly product demand: D{w) = w° — 2w? + Sw — 4, w) represents

m‘ediotaddamand{inmim)andwislh:weekmbd& se the remasinder
theorem to predict demand for 3™ week. Ifthepb{gedcmmdiszz units,
calculate the prediction error.

3. A digital signal processing system has 8 function with a mumerator
B(z)=2"—z — 2. Use the factor theorem tgTind the zeros of the system.

4, A signal process s}rstemhasa.tmng@mctiun H(z}:m Find the

z2—02z+09"
zero(s) of the transfer ﬁmntion(%‘,(\umng factor theorem.

5. A signal process system @’?&mfﬁ fanction H(z)= %. Find the
zerofs) of the transfiet fimction by using factor theorem.

6. A signal gysiem has a wansfer fmction with a demominator
Az) = 2 =03z — 0.4, Use factor theorem to find the poles of the system and
determing : system is stable.

i 2 Thﬂﬂ%&ninﬂlmnfaignalmmsxingﬂystem'smferfumﬁmequalm
A(z) = 22 + 12z +0.35 Use factor theorem to determine the location of the
corresponding poles and asgess the stability of the system,



W Trigonometric Identities

INTRODUCTION

In this unit, we shall first establigh the fundamental law of trigonometry before
discussing the Trigonometric Identitles. For this we should know the formmula to find
the distance between two points in a plane.

10.1 Distance Formula: (Recall) |
Let P(x;, 7,) and Q(x,,y,)be two points, If “d ™ denotes the distince between them,
then d=|PQ|=f(x—xl+01—»)*

or = ea—xF+0-n)
Find distance between the followihg points:
O 438 , B(S6) |
(i) Ploosx,cosy),Q(sm x, sin y)
Solution '

() Distance = | 45| =357+ B~ 6)" =VA+4 =22

(i) Distance = [PQ| ={oosx —sinx)’ 1 (cosy —sin)?

= 4m2x+ sin’ x—2cosx sinx +cos” p+ sin” y—2cos p giny

- ‘/Z—stx sinx— 2cosy sin y

= J/2—2(cosx sinx+ cosy sin y)
10.1.1 Fundasmental Law of Trizonometry
Let a and 4 be any two angles (real mumbers), then
cos{a—f) = cosar cos f +sina sinf

which ir called the Fundamental Law of Trigonometry.




Proof: For our convenience, let us assume that &> £ > 0.
Consider a umit circle with centre at
origin 0.
Let termingl sides of angles & and # cut
the unit circle at 4 and B respectively.
Evidently mZAOB=a - 8
Take a point C on the unit circle such that
m/ XOC=m/AOB = a-§.
Join 4,B and C.D.
Now angles @, # and @ — # are 1n standard position.
. The coordinates of A are {cos o, sin a).

The coordinates of B are (cos £, sin §)

The coordinates of C are (cos &~ f ,sinz—F )
and the coordinates of £ are (1, 0).

Now AAOE and ACOD are congruent. & [(SAS) theorem]
T, [AB=CD = [~ (D]
Using the distance formmla, we have:

(cos @ — cos FY + (sin a— sin £)% = [(cos{a@—F)—1F + [sin (@) — 02
= cos @+cos® £ — 2 cos @eos f+sin® a+sin? f— 2sin asin B
_ = cos’{a —f) + 1 — 2 cos(a — ) + sin’(z — F)
=  2-2(cos a cor A+ sin @ sin §) =2 — 2 cos{a —f)
Hence ' cos (@ —5)= cosaxcos f+sinasin g
(1773 Altiwugh we have proved this Law for @> 4> 0, it is trua for all valuss of @ snd 5. )
Buppose we know the valnes of gin and cos of two angles a and B, we can find
cos(e — f) using this law as explained in the following example:

Find the valne of sin 2.

As % =75°=45°+30° = %+£
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10.1.2 Deductions from Fundamental Law
1. Weknow that:

cos{z — B} = cos a cos §+ sin ez 8in B
Putting a= % in it, we get
:os[%—ﬁ]=ms%msﬁ+singsinﬂ

= cns(%—ﬂ)=0.cm-ﬁ+l.sinﬁ [ ca%:%:‘il,ﬁn% =1 ’

m[g—ﬂ}sinﬂ ®,
2, Weknow that: :
cos (e — ff) = cos a cos B+ sinesin B

o] e

= ms[a+%) ='gos . 0 +sin a(—1) i

E'Q?EJ' a) = —ging (i)

3. Weknow that:
008 (% -,s] —sin 8 [G) sbove]

Putu'ngﬁ=%+a in it, we get

[5-(ire)=(5+9




4. Weknow that:
cos{a— ) = cos arcos f+sin @sin f
Replacing 4 by —f we get
cos[a—(—4)] = cos a cos (— f£)+ sin asin (— 5)

[ cos(—3) ="coaf, sin(—f) =—sinf]

= cos{ec-+ )= cosa cosfl —sine gin (iv)

5. Welknow that:
cos{a + ) = cos & cos f - sin & sin §

Replacing a by §+a.w=get

o1} sl

= cos[g+(tz+ﬂ')] =— gin o cos f—cos a sin B

= —_~,nin{d+ﬂ) = —[sin & cog £ 1 cos a &in 8]
sin(a + #) =sina cos B + cosa sin f )
6. Weknow that:
sin{ex + ) =sin @ cos #+cos @ sin § [from (v) above]

Replacing £ by — 5, we get

i

sin(@ — f)=sina cosf —cose sinf (vi)
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We know that:

cos{z— f)=cos gcos §+sina- sin §

Leta=2xand f=6

8.

10.

cos(2x— @) =co8 2x. cos B+ gin 2 gin @

~1-c08 +0-gin 8 {ﬁg:}}
= cos £ {vii)
We know that:
sin{fx— f) =sin@- cos f—cog - sin f
sin{2z— @) =gin 24 cos ¢ —cos 2xsin §
=0.cos 0~ 1.5in @ {gg:f
=—gin @ (wiif)
_ sin{f@+f) _ sing cos f+cosa sin
L ey gy 7. m—"
ging cosfd | Sosa sin 4 Dividing
_ cosa cosf " cosa cosff numierator and
cos cofff sing sin denominator by
cos cosfl cosc cos cosax cosf
- fang +tanf .
m{a—l_'e{l\ 1—tana tanf ()
e _ sin(@—-g) _ sing cosf—cose sing
tan(a~5) cos(@—F) cosx cosf+sina sinf
ging cosf  coscx sinf Dividing
_ cosa cosfl cosa cosf mimerator and
cosex cosfi Q sin sinf denominator by
cos cosfi cosa cosf cose cosf
m(a_ﬂ)=w )

1+tma tanf




! _ oo (I
10.2 Tngunometrlc Ratios of Allied Angles

Two angles o and § are said to be allied, if a + §=n(50), ne z
For example, + a, 90° +a, 180° + &, 270° + a and 360° + a are some allied angles of a.

Using fundaments] law of trigonometry, cos{a— ) =cos @cos f+ sin @ sin F and its
deductions, we derive the following identities:

ﬁn(i-a]:ma, ms[£—6)=sin 8, mn[i-a]=mta

2 2 2

sin(£+ﬂ)=m59 ms(£+ﬂ) —g§in @, tan[ +9]=—cot6'"
2 ¥ 2 2 '

sin{z—@)=sin & , cos(r—6)=—0c08 8, tan(x )= tan ®
gin (7 +&) =—sin §, cos(z +0)=—cos @, tan(zx +&)=tan &

sin(ﬂ- ):-mse,m(ﬁ- ]:-sine.fm[ﬁ- J:me
2 2 2
sin(a?’r+3)= —cos 0, m(%+ﬂ]_=lsin g , tan[%ﬂ?] =—cot &

sin (2% —§) =—sin @ , cos(2r —B)=cos &, tan(2x —8) =—tan @
sin(2z+8)=sin § , cos(2x+@)=cos &, tan(2w+8) = tan &

The shove results also 1o the reciprocals of sine, cosine and tangent. These results
are to be applied mﬂumdyuftrignnmnetrymdtheymhemmmbﬁed
bynmgﬂwﬁallamdwm

1. If & is added to or subtracted from odd multiple of right sngle, the
ttigonomﬂ'iﬂmtiunchmgeinlaom—nﬂm and vice versa.
ie, sm Z—= cos, tan 2 cot, sec z—* cosec

c.g sm[i— ]=cu59 and ms[g?’r+9]=sinﬂ

2 H'His,addedtoorsubtactedﬁ‘omanwenmulﬁplenf%,ﬂ:et‘iguno:hetric

ratios shall remain the same.

3. So far as the sign of the results is concerned, it is determined by the quadrant
in which the terminal arm of the angle lies.
eg an{g— H=sinfd, tan{x+O@)=tmd, cos2x-0)=




$
Eim +va Al 4w
x X
iz
x+ 0 or ?—E m tan +ve COB +vE
= _.yr
%w -8 | I .

(= . (= . (3n o Y
(a) Insm[i—.?],sm[5+ﬂ],sm(?—] m:uim_n[?+9] odd

multiplies of %am involved.
Therefore, sin will change into cos.
Moreaver, the angle of measure

0 [%—a]wlhmmﬁnalsidsmmr,
So, sin [%—9] =cos 8;
(i) (%Fﬂ]willhawtemﬁnalsideinmad.ﬂ,
So, sin {%+9]= cos §;
. (iid) (37”—9] will have terminal side in Quad. III,
So, sin [3%—6] ——cos 8;
(iv) (%+6)wiﬂhavemnninal-sidnin{1uad.w.

So, sin [%r+9)=— cos 6.




() In cos(z — 8), cos{m + B), cos(2xr — 8) and cos(2w + @), even
multiples of %m involved.

Therefore, cos will remain as cos.
Maoreover, the angle of measure
(@) (x— &) will have terminal side in Quad. IL, therefore
cot(z—0) =—cos 8;
(ii) (#+ &) will have terminal side in Quad. IIT, so
cos(z+&H=—cos &
(ili) (27— &) will have terminal side in Quad. IV; so
cos(2x— 6) =ces #;
(iv) (2« + #) will have terminal side inQuad. I, so
cos(2r+ @) =cos A
Without using the tables, write down the values of:
(i) sin225° (i) tan 600° (i) cot(—225°) (iv) cosec(—420°)
1

EXITIE (1) sin 225° = sin (180 +35)° = —sin 45° = — N3

(i) tanﬁOﬂ“=tan(54ﬂ+60.j°=mn(ﬁx90+60)°=tan60°=\E
(iii) cot(-225%)= —001;;2256 =—cot(180 +45)° = —col(2x 90 + 45 = —{cot 45°) =1
(iv) cosec(—420°)=—cosec 420° = —cosec(360 + 60)° =—cosec(4 x 90+ 60)°

=—gosec 6(° = =2

3

.. sin(180°—8) cos(360°—8) tan(90°-+ )
L0 d] Sinplily: 2 00— 8) cos(18° +8) a2 70" ~5)

sin(180° — ) =sinf , cos(360°—8) = cosd
0o Becanse < tan(90°+8) =-cot@, sin(S0°—-&) =coséd
cos(180° +6) =—cosd , tan(270° —&) = cotd
sing- cosf- (—cotf) _ —sinf iy
cos &:(—cosf)-cotf  —cosh

Therefore, ten &
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¥ EXERCISE 10.1 _{

Without using the tables, find the values of:

) cos(—1230°) (i) tan(— 1035°) (iii) sec(1140°)

(iv) cosec(— 690°) (v) cot{1320°) (vi) cos (- 240°)
Express each of the following as a trigonometric fimction of an angle of positive
degree measure of less than 45°.

) cos 168° () sin192° (iii) cos 333°
(iv) tan213° (v) cos(-435°) (vi) sin219°
(vil) tan (— 597°) (viii) cos (—111°) (ix)- 5in (-390°)
Prove the following: i
() sin(180° + @) 5in(90° - @) =-sina cosa@ <

1

(i) sin810° sin 630° + cos 135° Hin225°=_.—'-§-'

(i) tan150° cot330° — 2sec 135° coses 225° — -3

(iv) sin 210° + cos 240° +tm225° + mtﬁﬂ“ =1

Prove that; -

o tan(180° +a) cot{90° o )
SIn(60° —ar) cos(2TP )

sin (:rm)tm(%ﬂaJ

=cos §

(ii)

cot> [% —ﬂ-‘] cos’(w—8) cosec(2r —8)

iy =000 +6) sec(6) tan(180°—6) __
see(360° —8) sin(180°+8) cot(50°—8)

s w350 () ()

If a, §, y are the angles of a tnangle AFC, then prove that

() sin(a+f)-siny @ soo (“12)- e

(iii) coseca= (iv) tan{(a+8)+tan y=0,

S
sin(4+7)




10.3 Further Applications of Basic Identities
Prove that: sin(a +§) sinfa~8) = sie? a—sin? §

28 costa

@
(i)
LHS. =sin (z + B) sin(z - B)

= (sin & cos 1 cos a sin B) (8in @ cos - cos a &in f)

= sin® o cos® B— cos® @ sin? §

= gin® a(l — sin? ) — (1 — sin® ) sin® £

= gin? o — sin? o sin® F— gin? B+ sin’ ¢ sin’ §

= sin® & - sin? A | )

=(1-co @)—(1

— co? f)

=1-cos” @— 1+ cos’ #

:f—cos’ @

(i)

Without using tables, find the values of all frigonometric fimetions of 105°
ERTTIT, As 105° = 60° +45°
gin 105° = sin (60° + 45°) = sin 60° ws45"' + eos 60° gin 45°

(2B
cos 105° =cos (60° + 45°) = cos 60° cos 45° — sin 60° gin 45°

BEIE-

P

tan 60° + tan 45°
1 tan 60° tan45°

tan (60° +45°) =

_ V3+1 _1+J§
1-B4 1-48
1 _1-43
tan105° 1443
1 22
sinl05® f341

1 22
cos105° 1-3

tan 105°

cot 105° =

cosec 105° =

and sec 105° =




P that: cos 11 +sfn11 = tan 56°

cos 11°—sn 11°

ot 4 Consider
RHES8= msﬁ":m(,q,sb_l_lln): tan45° +tanll
1-tan45°tanl1®
| 01T
_lrtanll® +msll° _ e08ll®+ainll®
l—mnll“ 1_ Ei.[l]l" nml'lo_sinllo
cosll®

=LH.S

cog 11°4+gmn 11°
Henge = tan 56°
cog 11 —sin 11°

]fmsa=—% t.a.nﬁ—— the terminal side of the angle of measure
hhﬁeﬂqmﬂ:antandthatofﬂisinﬂmﬂlqmdmnt.ﬁndthevﬂuesof.

@  sin{a+p) () | eos (z +5)
In which quadrant does the temminal side of the wgle of measure
(a+ B) lie? _
SN, We know that sin® @ + cos® @ =(1

z
Therefore, sina i-Jl a:=:|:1’l —— 5?

Asﬂmtermmals:deufth:mglqnfmeasmofalsmﬂ:eﬂquadrant,wharemals
posgitive.

S-D. s-illﬂ' _— A

2
Now . secfl == 1/i+tﬂnzﬂ = 1+(?J =:I:15—3

As the terminal side of the angle of measure of F1n the quadrant IMT, 20 sec f1is negative

sec S ——E and msﬁ——i

'fi ’ 1
smﬂ-:l: 1 ﬁ +.11- —E J;

Asﬁeterminalmufthemgleofmaasumﬁmmﬂlemquadmﬂ,aunmﬁ-iun‘egative

gin A __E




sin(a+ﬂ] =sina cos f+cosa sin

- (ﬁ][_i},(_l\[ 12]= -120+84 __ 36
25)\ 13 25)\ 13 325 325

and cos(a+f) =cos acosf— sin o sin f

_{ 7Y 5) (24\( 12)_35+288_ 323
[ 25)[‘13)“[25,[ 13] 325 325
Ag, sin(a+fF)is—ve and cos(ex+ f)is+ve
Thus, the terminal amm of the angle of measure (@ + £#) is in the quadrant IV,
(BTN e|  Ifa, 8, yare the angles of A ABC, prove that:
(i) tangttanfttBny =tanea tanf tan y
' a pB B 7 .
('.Ll) ME tanEHmlE I:m5+tm1£ ME—I
M e, B, v arc the angles of A ABC, therefore
a+f+y =180
atfl =180F—y
(i) tan(z+A)=tan(180° -
tang +tanf
1—-tane tanf
fan #+tan f =—tan y+tano tan A tan ¥
tan +ten S+ tan ¥ =tangx tan § tan y

() As a+f+y=180~ = Z+B.7 _op
2 2 2
a f '
_.|___,_.=90°__
g0 2_ i 2
2w
2 2 2
& B
tan > + tan’>- Ly 1
1= tan® tan? 2 ol
22 2
w6 il wl-1-tn? .
2 2 2 2 22
tanZ 1:a:1£+1;a:r1E tan? +tan? tan? =1
2 2 2 2 2 2




ST ()| Express 3 sin 8+ 4 cos @ in the form # sin{@+ ), where the terminal side
of the angle of measure ¢ is in quadrant 1.
Let 3 =rcos¢ (i)
and 4=rsing (ii)

Bquaring then adding (1) and (ii)

T+ 4= 7 oo g+ P sind
Dividing (i) by (1)

9416 = ¥ (cos’d + sin’%) ;=ﬂ

25— 3 : roos ¢
5=r ' §=tﬂ'1¢
r=35 4
™73,

3sinf@+4cosf = rcosgsin H+rsm.-gms'9
= r (sin & cos ¢+ cos Psin )
= rsin (9 +¢).

where r=35 mﬂ tan! # __
PV EXERCISE 10.2 J

1. Without using table fitdthe vahues of the following; Hint
() sin15° (i) cos 15° (iii) tan 15° 15° = (45° - 3(F) and
(iv) sin 105° (v) cos 105° (vi) tan 1050 W05 =(60° +457)

2, Prove thet{ . (i) sin(45*+a)= J_ (zsin ¢ + cos @)

RV

(ii) cos{a+45°)= E(ﬂﬂs o — sin a)
3. Prove that (i) tan(45°+.A)tan (45°—A)=1

R o o

ginf—cos @ tang P

) Do ) Eafund  cosO+6)




4, Shwthal: cos{a+ F) cos(a— §) =.cusia—siniﬁ=m@2ﬂ—sin’a
5. Show that: sulo+f)rmia—f) ={an &
cos{e + )+ cos(a — )

6. Show that: (i) sin*(@+ %) —sin*{a —%) =3in2q.sin §

(if) sin? o +sin® 8+ cos (@ + B)+ 2sina.sin f.cosfa +B) = 1

7. Show that:
O corlap)-TRIBE ) sinfarh)- ;::::;
- S
W wr@rp = T

B. If sliu::.'=g and cos f= @,w];eﬁ:ﬁﬂ-:-aﬁi and ﬂﬂﬂ-ﬁi.
25 29 </, 2 2

Show that siu{a—ﬂ}=%, s
9. If sin c‘:——i and m,ﬂ= —11 Whms—n <g<lixm mdx{ﬁ<3—g Find
17 at 5 2 2
() sin(z+B) (i) cos(atpB) (ii) tan (& B)
(v) sin{e-p)\ 0 (v) cos(a-f) (v) tan (@-f2).

hmchquad!mdoﬂletmmal gides of the angles of measures (@ + f) and
(a— B) ligd\,
10. Find sin. (uf-f ﬁ') and cos (ﬂ.‘ + /), given thal

43 tana—% cos f= —3 and neither the terminal side of the angle of measure
@ nor that of 8 is in the quadrant I,

Gi) tan @=- %-and gin = — % and neither the terminal side of the angle

of measure o nor that of § is in the quadrant IV.
¢0s 19° +-gin 19°

11. Prove that =1an 64°,
vOE o 1P —sn 1o

12, Prove that: cos(60° + &) cos{60° — 8) + sin(60° + &) sin(60° — &) = cos 26
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13, Ifa, B y are the angles of a triangle ABC, show that

et T ot ot = ekl ol
2 2 2 277z T2

14, If @+f8+y=180°, show that: cota cotf+cot S coty+coty cota=1

15. Express the following in the form rsin(@+ ¢)or rsin(@—¢) where terminal
gides of the angles of measures 8 and ¢ are in the first quadrant:
() 24sinf+7cosd (i) 12sinf-5cosd (iii) sin &#—cos &
(iv) 8sinB —6cosd (v) %sin9+§em6 (vi) 13sin 68— Bdcos 6

10.4 Double Angle Identities
We have discussed the following resulis:
sin (z + f)=#&in & cos f + cos a2 sin #

_ : - oy D@+ teng
cos(@+f) =cosx cosfi—sing sinf and tan(o-+f5) I—tang tand
We can use them io obtain the double angle 1dmt1hﬁ as follows:
i Pt f=cinsin(at+f) = sinccosfcosasnf
gin (& + @) = sin @ cos @+ cos a siNE
Hence sin2oa=2sing cosa
(i) Put f=wincos{a+f)=cosa cos f—sina sinf
cos{@ + @) = cos @ cos @—gin'e sine
Hence cos2 o =cos® a—sin*a
cos 2 @ = cog’ @ —sin® &
cog2 @ = cos?a=1(1— cos® a) (v sin? a@=1-cos® @)

=eotfa—-1+costa
cos2 g =2¢cos a—1
cos2 o= cos’ a—sgin’ o
cos2 a= (1 —sin? @) —sin® & (- cos @=1-gsin? @)

cot2a=1-2sin’a

. tan ¢ + tanff
Put — + - ¥
(i) praintmat = s
tana + tanee
+ e L T it h B
tan(a+ @) 1-tane tana
g 2

1-tan* e




mamenates (100

The formulas proved above can also be written in the form of half angle identities, in
the following way:

(i) cosa=2cof? 2 -1 = cos? a4, s cox pou Loy fLHC0SE
2 2 2 2 2
@) cosa=1-20it % = g E1T08E , g @ [l-cosa
& 2 2 2 2
Bing 1-cosox
@) anF=_ 2 3V 2 = it Fak ,m
3 e 1+cosa 2 1+ cosax
2 2 v 1
10.6 Triple Angle Identities |
(i) sin3g=3sng-4sin’a (ii) cosde=dcos’ a—3cos e
Itan  — tan’e
tan 3=
@) tm3a= s

Proof: (i) sin3e =sin(2a+a)
=gin 2a cos ¢ +'cos 2 sin &
=2 sm a cos @cos a+ (1 —2 sin’ @) sin
=2 sin @ 00s” @ + sin @ — 2 5in® @
=2 i a(1 — sin? @) +sin. @ — 2 sin® &
=24ma—2s5n ¢+sina— 280 a
gin 3@ =3 gin g—4 sin’ @
(i) cos3z "~ =cos (2a+a)
i = ¢08 2 coB @ — 8in 2 sin o
=(2cos* a—1)cosr—2sin@cos ersin @
=2cos’ a—cos - 2sin @ cos @
=2¢08 @—cos @—2(1 — cos @) cos @
—2co8’ @—cosd—2cosx+2cof &
cos3a =4cos’ a—3cosex
({iii) tan3e =tan 2z +a)
_ tan2o+fana
 1-tan 2@ tana




1-tan’ ¢ _ 2tana +tane —tan’ o
= z 2
- 21311:’: tan e 1-tan*q — 2tan‘er
1-tan"cx
= Jtana —tan’o
1-3tan’or
siné + sin 2% =¥ f)
1+ cosé +cos P
sind+2sinfcosd  sm&(l+2c088)

tan’

(el L111|  Prove that:

Soluto LHS. = =
o 1+cosd+2cos’@—1 cosd(l+2008d)
- I8 B -RHS.
cosf
Hence Btk =tan A,
1-+cos &+cos 26
- Ztan& r 1-tan*@
le Show that: 2= —— 280=
Examplef¥] (i) sin Yoo (ii) cos r——
23in& cosf  2siné cosf
Soluti i) sin28 =2gin @ g = =
(1) sm 510 Gﬂﬁg 1 ms=6+s_in=3
2sin& cosd 2aillﬂ
__ cos'®  _ cosé
cos’ G +sin’d  cos’d sin’d
cos’ 0 cos’d cos’d
2tan @
in28 = ——
e Iranie
R D e e B
1 cos’ @ +gin’d
cos’f—sin*f cos’d sin’d
_ cos’# =cm’5' cos* @
cos® @ +sin’@ cus‘ﬂ_'_sin’ﬂ
cos’ @ cos°d cos®@
1-tan*8
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(ATTN01913| Reduce cos® @ to an expression involving only function of multiples of
8, raised to the first power.

We know that:

2co88 @ = 1+co328 = mgz9=1+m529

2

cos* 8 = (cos” 8)* = [—“mm]ﬂ

2

_ 1+ 200828+ cos’28
4

[1+2 cos 26+ cos? 28]

o | = -h-I'—

[1+2ms29 1+ms4ﬁ]

=4 5 2+4cm29+1+cas49]

%[3+4ms29+m49]

P~ EXERCISE 103 _d

1. Find the values of sin Ir_-:.?, ¢os 2 ani laa:z Za, when:

(i) sina=%_ (i) cﬂsa— whmﬂ{a{iz
2. Prove the following identities:
i tax—tana=2 cot2 ii) —————=tan
(i) upt a cot 2ex (ii) W 74
i) =25 _ g% (i) 2T _ se02 - tan2a
sIngk 2 cos& +8ing
sin +cos >
) :+s1lna= i j (vi) cosecﬂ+2;osec23=°0t%
2 2
(vil) 1+tan o tan 2 = see 2 (vityy 2SBO 2G50 tanp

cosd +cos3d




3.
4,

: 8

gin3f cos3p coglf sin3f

' " =2 =4cos28

) nd et W “sd | smp e
“'“%*m‘% sin38 cos3d
mtE_mE cosd ging

e 30848 1 3 5 . « 14-sin 28 ,(:r )
X)) — ten“ & +cot 8 xiv =tm*| —+ &
e 1-cos4@ 2( ) (=) 1-sin28 4

3z 3 3 ,T:r -1

(xv) cos® X +cos? 2 4 cos? 2F 4+ cos
8 8 2 8

Show that: 2cos 8 =2+ 2+ 2cos 48

Reduce sin® @ to an expression involving only flmution -:Jf multiples of 8, raised
to the first power.

Find the values of sin §and eos & without using tabte or calculator, when @ is:

@ 18 () 36 (ifi) | 54° (ivy 72°
; \ 1
Hence prove that: cos 36° cos 72° cos, '|lU_E?:mg 144° = R
Hint [N S o "\< N Let &=36
58 =90 58 = 180°
(36+26) =90° O 30+26 = 180°
36 =90° -2 30 = 180°— 26
sin 38 = sm(P0° = 26) el ain 36 =sin(180° — 28) e,

10.7 Express the Product (of sines and cosines) as Sums or

Differences (of sines and cosines)

We know that: .
sin (@+ ) =sin@cos # +cos @sin @
gin (z— f#) =sin @ cos B — cos asin f (i)
cos{a+f) =cosacosf —sinasinf (iii)
cos (@—ff) =cos @corF +sin asin fF (iv)
Adding (i) and (ii) we get
sin{er+ f) + sinfler — F)—2sm e cos § {v)
Subtracting (ii) from (1) we get
sin{ax + f) — sin{fe— F)=2 cos ar sin § {vi)
Adding (iii) and (iv) we get

cos{a+ ) +cos (g—f1)=2 cosa g coa (vii)




Subtracting (iv) from (iii), we get
cos{a+B)—cos(a— ) =— 2 sin e gin J (wiii)

So, we get four identities as:

2sin acos § = sinfg+ ) +sin{la- M)

2 cos a sin f = sinfo + ) — sin{a — H)

2eosacosf = cos(a + /) +cosfa— )

—2sinasing = cos(a + ) — cos{a— )
Now putting & + =P and ox — =0, we get

a=—P+Q and B =ﬂ
2 2

; . P+QO P-0
gin P+ =2
g O gin 3 cos 2 A

sin P~ sin 0 = 2c0s .+ 2 si_nf%gr\

e ng‘é}’—ﬁ
2

cosPt+eosQ = 2co08———

ﬂ( .
cosP-cos Q= -2 -@"‘5ﬁnP—Q

oy R x
(ST 14| Express 2 sin 76 c0s.36 as a sum or difference,
PRI 2 sin 76 008 36 =#in(76-+ 36) + sin(76— 36)
| =sin 106+ sin 40
TETT115] Prove without using table / calculator, that
sy 199 cos 11°-+in 71° s 11°=
[T, LELS =sin 19° cos 11° + sin 71° sin 11°

=%[25in19° cos11°+2 sin 71° sin 11°]

Ir . . § 6.546 °o_110
=E|:{sm(19°+11 )+5in(19° - 11° ) —{ cos(71°+11°)—cos(71°-11 )}]

=%[ 30°+sin 8° —cos 82°+cos 60F|

=t

=—[1+sins=-ms(w-sﬂ)+%]

bt
8]




Hence, sin19° cos 11° +sin71° sin11°=%

| BT 16| Express gin Sx + sin 7x s a product.

gin Sx + sin Tx = ZsinSI;?xmsx;?x — 2sin6xbos(—%)
=2 gin 6x coEx &k 'ms(— G)=cos &)

Express cos 8+ cos 368+ cos 56+ cos 76 as a product.
cos 8+ cos 38+ cos 58 +cos 78
= (cos 30+ cos &) + (cos 76+ cos56)
= 2m3ﬂ+9m3ﬂ—3+2m?€+*59 m?ﬂ—Sﬂ
2 2 N 2 2
=2 cos 20 cos 0+ 2 cos 66 cos@
=2 cos & (cos 661+ cos 28)
69+20 68-28
3 O ]
=2 cosf (2 cos 48 cos 28) =4 cos 8 cos 28 cos 46
Show that cos 20° cos4ﬂ°cos80°=%
LH.S = cos 20° cos 40° cos B(P
1

= 2@036[2005

{4 cos 2(° cor 40° coa B(P)

[(2 cos 40° cos 20F) . 2 cos 80P)

[(cos 60° + cos 20°) . 2 cos 80°]

(1)

| et P | e | e
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{coz B(° + 2 cos B(® cos 2(P)

{cos B)® + cos 10{P + cos 60°)

[cos BOP + cos(180° — BO) + cos 60°]

1
4
1
4
1
4
1
4

[mﬁ 80“—ms80‘+%] [+ cos{180° —8)=—cosd ]

[1]=1 - RIS

b

4.2) 8

Hence, cos 20° cos 40°F cos B0F = %

P~ EXERCISE 104 _J

Express the following products as sums prf ﬂj;ljbrcncm:

() 2sin3f cos (ii) 2 cos 56 sin 36

(iii) sin 58 coa 28 (iv) 2sin78 sin 28

(v) cos(r+y)sin(x—y) - (vi) cos(2x+30°) cos(2x - 30°)

(vii) sin 12° gin 46° : (viif) sin(x + 45°) sinlx — 45°)

Express the following sums or differcnces as products:

() sin50+sn3@ " (ii) sin 89— sin 48

(iii) cos6#+cos30 (iv) cos78—cos &

) ms_f__la‘-’" + cos 48° (vi) sin (x+ 30°)+ sin(x — 30°)

Prové the following identities:

Q) #in3x—8m x — cot 2 (i) sin8x+gin2x — tanSx
COSX—COB3X cosdx+cos2x

(i) sinA_s?nBﬂanA_B cmA+B (iv) gin 80° +sin 40° -5
sinA+gsin B 2 2 cos B0° +cos 407

Prove that:

() cos15°+cos 105° + cos 195° +cos 160° +cos 285°= 0
(i) gin 28 + gin 48 + sin 6 + sn 87 I
cos 268 4+ cos 48 + cos 68 + cos 84




10.

(m[—-—)— 5+ 2] sne
(i) sin(:—@] i [4+9] 500828

sin & <+ 8in 38 -+ gin 5§ + sin 79

=ian 48
™ cos8 +cos3f +cos 59 +cos 78
Prove that:
© mzn"mchussmmsou%

o o W . 2% .o®m . 4w _ 3
(ii) mna-sm—sm—sm—=—

o "3 " g T g
(i) siml(P sin30° sinS0° mw:ﬁ

Provethn — B0 o e - duions hn ASOL iR 15¥
1+ 2cos 28 N

Prove that: tan75°—tanl5° =23 ()
Prove that: coel5°—8inl5° =— )
~

D=

1.2 sin®
Prove that: — e —— - =tan{e +§ )
sina cosajgn"ﬁmsﬂ

Prove that:
singr+sin ﬂ+ﬁn1’ ﬁm{o:+ﬁ+7) 4sm{‘z+ﬁJ i [ﬁ+?'Jm[J’+ﬂJ

2 2 2

'
5 )



Trigonometric Functions
and their Graphs

In this unit, students will explore key concepts essential for understanding the role of
irigonomeiry in mathemstics and itz real-life applications. We will begin by learming
how to determine the domain and range of trigonemetric functions to understand their
behavior. Next, we will discuss even and odd functions, along with their periodicity,
which explains their repeating patterns.
Students will then learn how to graph and analyze sine, cosine, and tangent fumctions,
following this, we will focus on calculating the maximum and minimum vahies of
pinusoidal functions and examining their unique properties such a&s amplitude,
frequency, and phase shifts,
Finally, students will apply these trigonometric coneepts to solve practical problems in
navigation, engineering, and physics, inclnding calculating distances, optimizing solar
panel angles, and analyzing forces in structures. Mastering these concepis will enable
students to golve both theoretical and real-world problems using trigonometry.
Let us first find domains and ranges of irigonometric functions before drawing their
graphs.
11.1 Domains and Ranges of Sine and Cosine Functions
We have already defined iriganometric functions sin £, 4
cog 8, tan &, csc 6, sec @ and cot 6. We know that if
P(x, ¥) 1s any point on unit circle with centre at the
origin O such that m/ZXOF = @ in standard position,
then x
cos@=x and sind =y

=» for any real number & there is ons and only one

value of each x and y i.e., of each cos & and sin 8.
Hence sin # and cos & are the functions of & and their v ~Flgurelill
domain is R, the set of real numbers.
Since P(x, y) is a point on the unit circle with centre at the origin O, therefore

—1<x<1 and -1<y<1
= -1<comf=<1 and -]l <sn@ <1

Thus, the range of sine and cosine functions is [-1, 1].
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11.1.1 Domasins and Ranges of Tangent and Cotangent Functions
From the Figure 11.1.

@ tnd=72 x20
X

—
—  terminal side OP should not coincide with OF or OF” (the ¥-axig)
3, gal g 5
2’2" 2

= #+ (2n+l)%, where ne Z

Domain of tangent function = % — {x | x=(2n+ 1) %,-n_'E:_Z}'

Ify=%,tan9=%asx—rﬂ,%—vimlhﬂleﬂaﬁthﬂmngecftangem
function = R = set of real numbers.

(i) From Figure 11,1
= 8
cot 8= ¥ =0

terminal side OP should riot coincide with OX or OX’ (the X-axis)
8+ 0,tm+2m...
@ # nx,wherene Z
Domain of cotangent function =R — {x|x=n#z ne Z}
Ifx=%,(qet’ﬁ=%asy—rﬂ, ziy—rimthereforcmge-ofmtangent
function = # = set of real numbers.
11.1.2 Domain and Range of Secant Function
From the Figure 11,1

LRI

secﬂ—l,xa&ﬂ
x
—
= terminal side OP should net coincide with OF or OF” (the Y-axis)
® 3  Sm

Pipd B o8
= 35 3" §

= 8= (2n+l)%.whﬂrenez

Domain of secant function=/ — {x|x=2n + 1) %,ne Z}




LT 1LY 1 ttr Graphs <am> Riashivtiontion
As 0=x<1 s0, %El,secﬂzl and -1<x<0 so0, %5—1,5&065—1
As sec @ attains all real values except those between —1 and |
Range of secant function=R — {x| -1 <x<1}

11,1,3 Domain and Range of Cosecant Function
From the Figure 11.1

1
@=—, y#0
C3C 3y y

U

terminal sidﬂal;‘shmﬂd not coincide with OX or OX” (the X—axis)
8=+ 0,tmt2n.. '
0 # nx, wherene 2
Domain of cosecant finction=R— {x |x=am, ne Z}
As csc @ attains all values except those between —1 and 1
Range of cosecant function =R—{x[-1<x<1}
The following table summarizes the domaing and ranges of the trigonometric functions:

§ ¥

Funetion Domain Range
y=sinx (—o0,00)=R . [-1,1]
y=coax (o0, ) =& [-1,1]
VIR | e ) (2n+1)%.m5 7 |Geges
yenx o R= (~, ®),x2um,ne Z {00, @)= R
FReAw (—m,m},x¢(2u+l]%,uez G0, -1 U, )
y=cosecx | (—o0,00),x+nx, ne Z (~o0, —1] W [1, @)

11.2 Even and Odd Functions

A function fis said to be even if f(—x)=f(x), forevery @00 L
tumber x in the domain of .

For example: f(x)=x"is even function of x. Here
fH=0"=x"=f(x)




i <> S——,
A function fis said to be odd if f(—x)=—Ff{x), for every number x in the domain of f .
For example: f{x) = x’ ia an odd funetion of z.

Here f(—x)=(—x)=-¥=—f(x) 'Ehnoddﬁmﬂmnli
The function f(F)=cosf for all #e R iz an even ﬁmmw

function (see figure 11.2).

Here f(~8)=cos(—8) =cos 8 = f(6). Ao

Thus, f(&)=cos# is an even function. / (x.yl},.'étwsﬂ,ainﬂ)
Similarly, the function f(f)=sind forall (g / ,.i 4,0

@€ R is an odd function. i ="

Homg. L 23—t == =~ R0 k ) V-3 toon -4in8)
Thus, f(#)=sin# isan odd function. 6,—1) ERL

Tn both the cas "f;:r“mr.'.h:rm the
domain of f; xmmﬂg;jﬂmadmmnff

11.3 Period of Trigonometri¢c Functions
All the six trigonometric functions repeat their values for each increase or decrease of
2rn in & therefore, the values ofn'igbnoman'icﬁmctinns for & and & + 2nn, where
fe R and n e Z, are the same. This behaviour of trigonometric fimctions is called
perindicity.
Period of a rigonomgtric function is the smallest positive mymber which, when added
to the original circular measure of the angle, gives the same vahie of the function. A
function is periodic, if f(8+ p)=f(8), for all &in domain of function and the least
positive value of p is called the period of the function.
Now, let us discover the periods of the trigonemetric functions.
Theorem 11.1: Sine is a periodic function and its period is 2.
Proof: Suppose p is the period of sine function such that
gin (#+ p)=sin fforall fe R (A)

Now put =10, we have

gin (0 +p)=sin0
smp=10
p=0,+m +2x, +3m,...

=
e




<oi> Mot

gin (¢ +w) =sin (not true) v+ sinfx+@)=—sin g
Thus = is not the period of gin &
If p =2, then from (A)

sin(@+2n) =sin 8, whichistrue - sin{d+2x)=sin6
As 2 ig the smallest positive real number for which

sin (§+ 2x) =sin #

2 is the period of sin 4.

Theorem 11.%: Tangent is a periodic function and itg period is &,
Procf: Suppose p ig the period of tangent function such that

tan(f+p) =tn@® forall e R (B)

_ p=0,x, 2%, 3, ... ﬂBy,_.HEI ing the T
(i) If p=n,thenﬁum(B)tan{ﬂ+u)=tan&,,_i:ﬂﬁnﬂingthepeﬂod:ufﬁ:e
e tangent, We C&n prove
WA el » | @) 2is the period of cos @
As - is the smallest positive number for which | (i) 2x ia the period of cac @
tan (§+ ) = tan 8 | (i) 2 i the period of sec &
Tl t'ore,uistheperiodoftan-.ﬂ. L{I\F)'Ellﬂ.'lﬂpmml{!fmtﬂ. y
ITTTTT 1] Find the periods of: () sin2x (i) 3+tan§

o (i) We know that the period of sine is 2

(i)

gin (2x + 21) = gin 2x = sin 2(x + n) = sin 2x
It means that the value of gin 2x repeats when x is increased by =.
Hence 5 is the period of sin 2x.

Tnﬁnnihgpeﬁodaf3+tm§,msidemn1ymf.

3
We know that the period of tangent is «

tam (Eﬂr]: tan > = tan l(J:+?w) —tan
3 3 3 3
It means that the value of tan g repeats when x is increased by 3.

Hence the period of 3 +m§ is 37. The addition of constant nymber 3 to the

tangent fimction does not affect the period.
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P EXERCISE 11.1 _d

1. Determine whether the following functions are even, odd or neither ndd nor even.

() sin’x (i) sinx+cosx (i) sin®x+cos*x

. 1 . Sinx+sin3x

L T L g
. 1 1

(v sec.x+sec’ X (vit) secx+cot’ X

2. Find the periods of the following functions:
() sinSx (i) cosTx (iii) tan 3x (i) mt%
(7 . 2x . 1. (3 7

@ s ge) o ooe( ) 0 pea(37)
iz 1 v p o x

(viii) —5—3m[?xx+zj le}.-, 12+101an [ﬁx)

Ix =
(x) 6—4mt[T+ E]

11.4 Values of Trigonometric Functions
We know the values of trigenometric functions for angles of measure 0°, 30°, 45°, 60°,

(xi) 9+30scc (i+EJ

and 90°. We have also established the following identifies:

sin (-6) =—sin & cos (-8) =cos 8 tan (—8) =—tan £
gin(z— ) =sin @, cos(x — 8) =—cos 8 tan (x — §)=—tan 8
gin{z+ §)=—sin cos(n +8) =003 7 tan (n + #)=1tan &

sin2z— 8) =—sin @ cos(2x— @) =cos 8 tan (2x — #) =—tan

By using the ahove identities, we can easily find the values of trigonometric functions
of the angles of the following measures:
—30°, — 45°, — 6P, — 90° + 120°, £ 135°, + 150°, &+ 180°
+ 210°, 4 225°, + 240°, + 270° + 300°, + 315°, + 330°, + 360°
11.4.1 Graphs of Trigonometri¢ Functionsg
To plot the graph we shall follow these steps:
(i) Table of ordered pairs (x, ¥) is constructed, when x is the measure of the angle
and y is the value of the trigonometric function for the angle of measure x.
(ii) The measures of the angles are taken along the X-axis,
(iii) The values of the trigonometric functions are taken along the Y-axis,
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(iv) The points cotresponding t¢ the ordered pairs are plotted on the graph paper.
(v) These points are joined with the help of smooth cnrves.

11.4.2 Graph of y =sin x from — 2x to 2=

We know that the period of sine function is 21 so, we will first draw the graph for the

interval from 0° to 360° (from 0 to 2x).
To graph the sine fimction, first, recall that —1<sinx<1 forall xe A.
We know the range of the sine function is [-1, 1], so the graph will be between
the horizontal lines y=+1 and y=-1

The table of the ordered pairs satisfying y = sin x is as follows:

TEIEAL A AT A A 4 P™
. 6 | 3 | 2|36 6 | 3 |2 | 3 |6
0" | 307 | &0° | 90° | 120° | 150° | 1B0° | 210° | 24(0° | 2707 | 300° | 330° | 36(F
Snx| O |05 (087 | 1 |087| 05| 0 |/—05|-087 -1 |-087|-05| ©
To draw the graph:

1 side of big gquare on the y-axis=1unit
(ii) Draw the coordinate axes.
(iii) Plot the points corresponding to-the ordered pairs in the table above
Le., {0, D), (30°, 0.5), (60°,0.87) and s0 on.
(iv) Join the points with the help of a smooth curve as shown. So, we get the graph of
y = sin x from § to 360° i.c., from 0 to 2m.
As we gee that the graphs of trigonometric functions are gmooth curves and none of them is
MEm%mmmorhwhmﬂmthmm%ﬂb:humuofﬂummmhd

continuity. Tt mesns fhat the trigonometric finctions are contimous, wherever they are defined
Mormover, uﬁiﬂmﬁmﬁ.mmpmnﬁnmﬂm:mmmaﬁlﬁndmﬂm

& ‘Takew i tme{lﬂdenfmﬂsquammﬂ:ex-mus—lﬁ

Graph of p=ginx from 0® o 360°
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Inﬂ:lesmﬂarwajr we can draw the graph for the interval from 0° to —360°. This will
complete the graph of y = gin x from —360° to 360° (from —2x to 2m), which is given

below:

Graph of y = gin x from — 360° to 360°

The graph in the interval [0, 2x] is called a eyele and the maximum height of the wave

ﬁ'omitsmidlineiscalledlmpﬂtude.Shaethepmiminfsﬁ;ﬁf[mcﬁonish,soﬂm

gine graph can be extended on both sides of x-axis through every interval of 2x.

Properties of graph of ¢ine function ( y = sin x)

(i) The domain is the set of real numbers {—o < x < o).

(ii} The range includes all real numbers from —1-1o 1, inclusive, [-1, 1].

(iiiy The graph of sine function is continuoeus for all real numbers,

(iv) The period of sine fimction is 2x. Mathematically, we can ¢xpress it as
sin(€+2;r)=sinﬂ.

(v} The gine function is an odd fimction. As the graph of sine function is symmetric
about the origin, Mathematically, it can be written as gin(—)=—sinf .

(vi) The maximum value of y=sinxis 1 when x=%+2m;.wh=re ne .

(vii) The minimum value of y=gin xis —1 when x=%+2ﬂn,whsre ne Z,

(viii) The x~intercepis of the sine function occurs 8t x=zn, where ne Z.

(ix) The y-intercept of the sine function is 0.

(x) The amplitude of sine function is 1.

(xi) Inunitcircle sin@ is equal to the y-coordinate of the given point.

11.4.3 Graph of y = cos x from — 2z to 2x

We know that the period of cosine function is 2n so, we will first draw the graph for
the interval from 0P to 360° (from 0 to 2m)

We know the range of the cosine function is [-1, 1], so the graph will be between the
horizontal lines y=+1 and y=—1.




The table of the ordered pairs satisfying y = cos x is as follows:

G [ o= o=y | )| Sm Sk g || B Smg) S 0w D)
% 6 3 2 3 6 6 3 2 3 6

o | or ot ot or or or of or | of or of or

0° | 3e | 60° | 90° | 120° | 150° | 180° | 2107 | 2407 | 2707 | 300° | 330° | 360°
cosx| 1 |DB7|( 05| 0 |-05|-0R7 -1 |-087 05| 0 DS 087 | 1

The graph of y = c08 x from 0° to 36(° is given below:

Graph of y=cos x n'om'lf' haﬂl"

In the similar way, we can draw the graph for the interval from 0° to —360°. This will
complete the graph of y = cos x from =360° to 360° i.e. from ~2n to 2m, which is given
below: -

.II.Y

e L E LR e 3 Al |

Graph of y = coa x from — 360° o 360°
As in the case of sine graph, the cosine graph is also extended on both sides of x-axis
through an interval of 2x.
Properties of graph of cosine function (y=cosx)
)] The domgin is the set of real numbers (—oo < x < o0).
(ii) The range includes all real mumbers from —1 to 1, inclusive, [-1, 1].
{iiiy The graph of cosine function is continuous for all real mumbers.
(tv)  The period of cosine fimetion 18 2x. Mathematically, we can express it as
cos(8+2x) =cosd.
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(v) The cosime function is an even function, 88 the graph of cosine fimction is
symmetric about the y-axis. Mathematically, it can be written as cos(—8) =cos8.

(vi) The maxitaum value of y=cos xis 1 when x=amn, where n is an even integer.

(vii) The minimum value of y=cos x is -1 when x=an, where 7 is an odd integer.

(viii) The x-intercepts of the cosine function occurs at x=g+nn,where ne Z.

(ix) The y-intercept of the cosine function is 1.

(x) The amplitude of cosine functionis 1.

(xi) Inunitcircle coad is equal to the x-coordinate of the given point:

1144 Graphof y=tanx from -~ to «

We know that tan (—x) = — tan x and tan (x — x) = —tenl x, s0 the valnes of

tan x for x= 0°, 30°, 60°, 90° can help us in malking the table,

Also, we know that tan x is undefined at x =+ %0°, when

(i) xapproaches % from left x—b[%] , tan x decreases indefinitely in Quand L

(ii) x@mmh&u%ﬁunﬁgbti.&.,x—)[%] , tam x decreases indefinitely in Quard IV,

(i) xapproachm—%
Quard IL
-1 NE
(iv) .rappmach&s-—%ﬁnmrighti.e.,x—}[—%} , tan x decreases indefinitely in

Quard TH.
We know that the period of tangent is &, 30 we ghall first draw the graph for the interval
from 0 to & (from 0° to 180°).

The table of ordered pairs satisfying ¥ = tan x is given below:

from-left ie., x—}(—%] , tan x increages indefinifely in

K x F 4 x 2r S
0 — — | ==0|=40| — | — &
. 6 3 2 2 3 6
o ar or o ar or or
o 3 | 600 | 90°-0 | 90°H0 | 1200 | 150° | 1BO®
tanx| 0 | 058 | LT3 | 40 | o | -1L73|-05RB| O
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Since the period of tan x i &, s0 we have the following graph of y = tan x from —360°

fo 360°,
4 A t £ 4

A H
Graph of y=tan x from - 360° to 360°

Properties of graph of tangent fufction ( y = tan x)

(i) The domain is the set of real numbers except the values where function is

undefined domain of tanx = (—co, @), x:(2n+1]%,wherane z
(ii) The range inclodes all real numbers (—co, ©)

(iii) The graph of'tan x is not contimmons for all real numbers. It breaks at x=(2n+1)%,
wherene Z

{iv) The period of tan function is 7. Mathematically, we can express it as
tan(8+x) =tand

(v) The tan function iz an odd function, as the graph of tan fimetion is symmetric
about the origin. Mathematicaily, it can be written as mn(—ﬂ):—tanﬂ

(vl The x-mtercepts of the tangent function occurs at x=m», where ne £.

(vil) The y-intercept of the tangent function is 0

(viii) The amplitude of tangent function is undefined because it has no maximum or
minimum values.
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EXERCISE 11.2
r 4

1. Draw the graph of cach of the following function for the intervals mentioned
against each:

(1) _}’=—SinZI,IE[—ZT!,2ﬂ] (11) J-'=ZBDEZI,.IE[—2‘E,2E]

(iil) y=tan 2% , xe [, 7] (v} y=tan 3 , < [-2n, 2x]

(v) y=si11%x , X [0, 2r] (vi) y=cos %x v xe [—my ]
2. Onthe same axes and to the same scale, draw the graphs of the-fallowing functions

for their complete period: N

(i) y=sinxand y=sin2x (ii) y=cusxaﬁd‘y'-=m2:

3. Solve graphically:

(i) sinx=cosx xe|[0,xn] (ii) sinx=ux, xe [0, x]

11.5 Maximum and Minimum Values of Given Functions of

the Type
o a+bsingd . o a+bcosd
s a+bsin{cd+d) o a+bcos(cd+d)

¢ The reciprocals of the above, where g, b, ¢ and 4 are real numbers,
The trigonometric ﬁmc.uons liks gine and cosine are periodic function because the
values of thege ﬂmn;ﬁunrepeal over regular intervals, These functions are fundamental
in mathematics because of the repetition of their values at definite cycles and are used
to model various real-life situationy, gnch as radio waves, light wave, and alternating
current in electricity and are also known as a specific case of sinusoidal functions.
The functions of the form f(8)=a + b sin 8, gl)=a + b cos 6, £,(8) = a + b sin(cé +d)
and g,(9)=a+bcos{cd +d) are the types of simusoidal functions,
Now consider the general form of sinusoidal function £,{¢)=a+bsin{cf +d)...[)
here *a’ represent the vertical shift refers to the vertical translation of the graph of the
function, achieved by shifting the entire graph upward or downward. This shift, also
known as the vertical displscement, moves the fimction's position along the j-axis
without altering its shape or period. Amplitude |b] is the maximum height of a wave
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measured from its midline. The period of (i) is equal to % Phase shift ‘d" indicates

the horizontal translation of the graph of the function, determining how far the wave is
shifted lefl or right along the x-axis. A positive J shifis the graph to the left, while a

negative 4 shifls it to the right, aliering f18y=1+3 sin (20)
the starting point of the wave without s'y

changing its shape or period. :

For Example, consider the function  Ampliude| @,

f®) =1+3 gin(28). Here 2 = 1 is M=

vertical shift, amplitude =‘b| = |3| = ihm'f“l\:;“]r‘
Eﬂﬂpﬂﬂﬂd‘%=ﬂaﬂshowninths 5

adjscent figure. ‘2“

Now, finding the maximum and minimum values of the functions
f(®)=a+bsin(cd +d)and g(8)= a+boos(ed +d) is not a difficult task. We kmow
ﬂmtthemaximnmabso]utewluusnfsineanﬂ_pnsheam equal to 1, so the maxinum
value of the product bsind is |b|.
Thus, the maxinmum value of £(8) ‘or g(f) is : M =a+|b|, whenever sind=1 ot
cos# =1 where M denotes the maxitium value of the fimetion.
The minimum velue of f{0) or g(f) function is m:a—|b‘, whenever 5inf=-1 or
cosf =—1 and m denotgy the minimum value of the function.
Thenbmh@“v‘iﬁeufahunadumﬁmnf f(@)=a+bsinf. The valve of the
_‘h“:l_’::,:hj . _ Mannnunvnlua; Minimwm valoe
Find the maximum and minimum values of the following fimetions:
(i) 2+3sinx (i) 5—-2cos3x (i) reciprocal of (ii)
EITTITA ()  Let f(x)=2+3sinx
The maximum valuoe of f{x) will ocour when sinx=1.Herea=2and 5= 3,
Maxituim value of the fanction: M=z + |5/ =2+3=35
The minimum vatue of the function will ocour whensinx=-1 .
Mininmym value of the fimction: m=a— b =2-3=-1
Thus, maxinmm vahse of the function is 5 and the mininmmm value is —1
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(ii) Let f(x) 5—2co8 3x
The maximum valoe of f{x) will occur when cos3x=1.Hereg=5and 6=—
Maximpm valye of the function: M=g+ [b|=5+-2|=5+2=17.
The minimym valee of the function will pecurs when cos 3x=-1,
Minimpm value of the fimgtiom: m=a- b|=3-2|=5-2=4.
Thos, maximpm value of the fimgiion is 7 and the mimomm value 18 3,
(it}  reciprocal of part (ii)

1

The reciprocal of S—2cos3x is ———
5—2coslx

1
Let g(x)=———
AT p—

To find the maximum and minimum values of g{x), first we will find the maximum and
minimum values of 5—2cos3x, which are 7 and 3 respectively,
After finding the maximum and minimum valnes take their feciprocal. The reciprocal of the
maximpm value is the minimum of g{x) and the regiprogal of the

minimum value is the maximum of g(¥). |

Maxinmm value of g{x)=

Minimum value of g{x}—M=—=0.14

11.5.1 Real World Applieations

Ferris Wheel Problems

The first Perris wheel was invented by George W. Ferria. He
bruilt the firat one for 1893 World's Fair. A Ferris wheel is an
important example of periodic motion that can be described
using trigonometric funotions, specifically sinuseidal
functions. When we model the height of a rider on a Ferris
wheel over time, we can use these functions to capture the
periodic nature of the motion. The motion of Ferris wheel can
bemodzled by f{f)=a+ b sin(ct+dh or f{(Hi=a+ beos{cr+e).

A Ferris wheel with 3 radius of 45 feet has its lowest point located 5 feet above
the ground. Ii completes one full revolution every 60 seconds i counter clock wise direction.
Model an eguation that describes the height of a rider on the Ferris wheel as a function of
time £, How high is the rider from the ground after 40 seconds?. Also praph the model equation.
EXITTETY, Since it takes 60 seconds for the Ferris wheel to complete one full revelution
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(one cycle}, which is the petiod of the Fetris wheel, that is period = 60

2 2% ”
——60 = =— =
“= 60 “=30

Theamphtudebwhlchlsequaltnthemdmsofafwheel(mthmcaaeb 45).
The vertical shift # is the height of the center of the Ferris wheel above the groumd.
Since the lowest point is 5 feet above the ground, sog=5+b6=5+45=50.

we can model the height of a rider using (sine or cogine), because it reflects the petiodic
nature of the motion. We usually choose a cosine function if the rider staris at the
maxinmm or minimum height, or a sine function if the rider starts at the midpoint.
Since the rider starts at the lowest point and goes up, we can easily model the required
equation as a negative coging fimetion so,

Kt) =—bcos(ct)+a, where ¢ is time and / is height,

Now substituting the above values we get the function A(f)=—45cos [%t }»—50,

which is the required equation of Ferris wheel.
Next, we find the height of the rider at 1 =40 seconds,

T
f)=—45 —¢ |+50
ey =—4500s{ 1 4
For t=40, we have
h(40)=—45 cns(:—u.dﬂ] +50 = 72.5 feet

Thus, height of rider afier 40 second is 72.5 feet.
The graph of the model equation i3 shown below.

Height of & rider after 40 sesonds Ty
100 I k{f) —ﬁm[s—ﬂf)+sn
)
80
?‘n :
RIE=-3 i) o\ Sy, S S V! -, W S (-
130 V
20 H
i
10 :
o e E {
5 10 15 20 25 30 35 40 45 50 55 60
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| AT TN 4| The water level L (in feet) of & tidal river varies throughout the day.
Suppose the level of the tidal miver can be modeled by the equation:
L{)=B+4sin [%t], where ¢ denotes the time (in honrs). The water level oscillales
4 feet above and below an average level of & feet.

(a) Find the water level at ¢ = 3 hours?

(b) What is the minimum water level?

Solution (8) Given equation of water level: L(f)=8+4gin [%:J

To find the water level, substitute = 3 into the equation
L(3)=s+4sin[§-3]=s+4sin(g]
L(3)=8+4(1)=12

Thus, water level at +=3 hours is 12 feet.

(b) Now, to find the minimum water level, we need 1o determine when the sine
function attaing its minimum wvalne. We know that the minimum value of

gin ¢ =— 1, substitute the sin(%t)=—1intqﬂ1=equaﬁon

L{f)=8+4sin[%l]=-8._’+4(—l)=8—4=4

Thus, minimum water level of the tidal river is 4 feet.

From a point 100'm above the surface of a lake, the angle of elevation of

a peak of a cliff is found to'be 15° and the angle of depression of the image of the pesk

is 30°, Find the height of the peak.

FEPITTT, Let A be the top of the peak AM and 4

MB be its image. Let P be the point of

observation and L be the point just below P (on

the surface of the lake).

From P, draw PO 1 AM.

Let mPQ =y metres and m AM = 4 metres.
mAQ =h—mQM =K—mPL =h—100

From the figure,

- AQ_h-100 e BO_100+h
PFQ y




VTRl 1) enometric Fmctiens <ae> Matnematics (TN

By division, we get
tanl5° _ h—100
tan30° ~ A+100
By Componendo and Dividendo, we have
tan 15°+tan 30°  A—100+44-100 _ 2h k
tan 15°—tan 30°  h—100—%2—100 —200 —100

tam 30° + tan 15° 0.5774+0.2679

"= mnanﬂ—mnls‘*"lm:[o.sm—o.zﬁ?g 0

= k= 273.1179. 2O
Hence height of the peak = 273 m. (approximately) _ “

P’_EXERCISE 11.3 J

1. Find the maximum and mininmm values of the fg]lnwing functions:

]xlﬂﬂ

@ 3-sin3x () 3+sinZx - (i) —+mn(5x+x)
(iv) %+cbs[x—£4] ) 1—3_@@.'2;-3' (vi) 1+2&1’n(; +E)
1 Lo X1 _ 1
) T0 2sinax Vo) ™ 5-30u(-1)
2, The temperature T in degéb; Celgius of 2 certain city varies throughout the day
acconding to the equaﬁm:l 1-"(:‘}—E £ﬁr—§)+ls. where ¢ is the time in

hours, with ¢ = ﬁmm-pnndmgtn midnight.
(a) Fmﬂ;ﬁcmmmmdmmmmtcmpemﬂnemthcday
(b) Ehidthstﬁmpmtumatf 9 hours (9:00 a.m,),

3. A msan onthe top of 8 100 m high light-house 18 in line with two ships on the same
pide of it, whose angles of depression from the man are 17° and 19° reapectively.
Find the distance between the ships.

4. P and Q are two points in line with & tree, If the distance between P and ( be
30 m and the angles of elevation of the top of the tree at P and 0 are 12° and 15°
reapectively, find the height of the fres.

5. A giani Ferris wheel has 8 diasmeter of 60 fest. The lowest point of the wheel is located
6 feet shove the ground. The wheel completes one full revolution every 80 seconds.
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(a) Model an equation that represent the height h(t) of a rider on the Ferris wheel
at any given time f.

(b) Find the maximum height of the rider.

{c) Find the height of the rider from the ground after 35 seconds.

A child is playing on a swing in a playground. The height A(f) of the swing seat above the

ground (in metres) at time ¢ (in seconds) is modeled by the function:

h{f) = 1.5 + 1.2 sin(3m)

() What is the maximum height reached by the swing seat? ol

(b) What is the minimum beight reached by the swing seat? =Y

{c) Huwlmgdnmﬂhkﬂﬁrﬁaswinghmplatenﬂnﬁﬂhmkﬂnﬂfm&muﬁm
(period)?

(d) At what time(s) does the swing seat first reach ahgg&mlz metres?

A camival ride congists of a vertical wheel with a diamteter of 40 feet. The centre
of the wheel is 28 feet above the ground. The whptrrotataﬂ at a constant speed and
takes 120 seconds to make one complete, mvﬂlutlon. Model an equation that
describes the height h{t) of e rider on th{wheel as & fumction of time t. How high
ia the rider from the ground afier 9ﬂ nectmdn? At what times will the rider be
36 feet above the ground? f-,(‘ .

Suppose the tempersture de:greeanhmhcﬂofLuhurccﬂymammﬂh of
December throughout the ‘day can be modeled by the equation:

T=64+8 sm[— (f—&}};*whm ¢ ia the time in hours. The temperature oacillstes

8 degrees above md‘ﬁeluw an average temperature of 64 degrees,

{a) Find th:;:ﬂmpmture at £ =9 hours?

(b) At whﬁl’ﬁm: the temperature will be maximum?

{c) Eﬂcﬁlate the maximum temperature,

Suppose the populstion of a coastal city follows a sinusoidal patiern due to
seasonal migration. The population of the city over the course of a year can be

modeled by the equation: P(r)=?ﬂﬂﬂﬂ+ll}ﬂﬂﬁms[%r—%), Plt) is the
population at time ¢ (f is the time in months, with { = § corresponding to
Jamary 1%), where ¢ denoted the months in a year,

(a) Find the population of the city at { =7 months,
{b) Find the maximum population.
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INTRODUCTION

In mathematics, the concept of limit and continuity is foundations! in understanding
the behaviour of functions and sequences, especially when applied to real-world
scenarios. This unit will introduce and explore how to demonstrate andﬁndthe]:lmlt
ofasequenceandafuncmm,undmtmdcnnhmmusmddmmmﬂnus functions, and
applyﬂmsecunseptsmvmousmnt:xtssunhasemnnmms.ﬁnmcc,mﬂnﬂhnal
sciences,

12.1 Limit of 2 Function _

The concept of limit of a function 1s the basis unwhmh the structure of calculus rests.
Before the definition of the limit of a funchion, it i3 necessary to have a clear
understanding of the following phrases, ,

12.1.1 Meaning of the Phrase “x gpproaches zero”

1 W\
Suppose a sequence X, = —- Assumes a sequence of values as:
M
ll..]:_lllzlliliq_“'!inl'“
& & AR 2

We can see that the sequence x,:% is becoming smeller and smaller as » increases and

can be made as small'as we please by taking “n” sufficiently large. In other words,
1 % . : :
=? becoming closer and closer to 0 a8 » becoming large. This unending decrease

of x. is denoted by x, — 0 and read as “x, approaches zero” or “x, tends fo zer0 a8 R —y 00,
That is, the limit of the sequence x, i 0.
12.1.2 Me¢aning of the Phrase “x approaches infinity”

Suppose a sequence x,= 10" assumes values as 1, 10, 107, 107, ..., 107, ...

It is clear that the sequence xx is becoming larger and larger as # ingreases and can be
made as large as we please by taking » sufficiently large. This unending increase of the
SEqUENCE Xy, i8 symbolically written as *x, —oo” and is read as “x, approaches infinity”
or “x, tends to infinity” as a—>
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12.1.3 Meaning of the Phrase “x approaches a”
Symbolically it is written as "x—a" which .. L
means that x is sufficiently close to @ but different  The symbol x — 0 ix quite diffecent
from the mumber @, from both the left and right fomx=0.

sides of a that is x—a becomes zmaller and x;ﬂimmmgdmw
smaller as we please but x—a=0. x =0 means that x is actoally zero.

12.1.4 Concept of Limit of a Function

(1) By Finding the Area of Circnmscribed Reguiar Polygon

Consider a circle of unit radius which circumseribes a square (4-si_dﬂdr&gu]ar polygon)
as shown in Figure 12.1. _

The side of square is +/2 and its area is 2 square unis. It is clédr that the area of
inseribed 4-gided polygon is less than the area of the eircum-circle

m=3.142(ar* =z(lY=x=3.142).

Figare 12.1; 4-sided polygon | Figure 12.2: 8-sided polygon  Figure 12.3:16-sided polygon
Bisccting the arcs bétween the vertices of the square, we get an inscribed 8-sided
regular polygon as shown in Figure 12.2. Its area is 2+/2 = 2.828 square units which is
closer to the area of circum-circle, A further similar bisection of the ares gives an
inscribed 16-sided regular polygon as shown in Figure 12.3 with area 3.061 square
units which is more closer to the area of circum-cirele.

It follows that as “a”, the number of sides of the inscribed polygon increases, the area
of polygon increases and becoming near to 3.142 which is the area of circle of unit
radius.
We express this situation by saying that the limiting value of the area of the inscribed
polygon is the area of the circle as »# approaches infinity, Le.,

Area of inscribed polygon — Area of circleasn — o
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() Numerical Approach

Consider the function £ (x) = =

The domain of £ (x) is the set of &ll real numbers.

Let us find the limit of f(x) =x> as x approaches 2.
The table of values of f(x) for different values of x as x approaches 2 from left and right

is a5 follows:

From left of 2 »2 » from right of 2
x 11 1.5 | L8 | 19 | L99 | 1.999|1.9999 2.0001|2.00L] 201 | 2.1 11 3. |13
)= 1]3.375 | 5.832 | 6.859 |7.B806|7.8806| 7.9988 | 8.0012| 8.012 | 8.1206 5.261 10.648 | 15.625 |27
The table shows that, a8 x geta closer and closer to 2 (mﬁimmﬂyclﬂnetn?.),ﬁ'umbuﬂl
sides, f(x) gets closer and closer to 8,
We say that 8 is the lmntoff(x)whenxappmaGhEBZandlswnttenas:
fix)—8a3x—2 or _lj_zjnﬂ_}:x’--=8

12.1.5 Limit of a Function

Let B function f(x) be defined in an open interval neer the number “a™ (need not be st
«). If, as x approaches “g" from both left and right side of “a” f(x} approaches a specific
number “L” then “L”, is called the limit of f{x) as x approaches ¢. Symbolically it is
written as:

lim f(x)=L1 read as “limit of f(x) as x — a, is L”.

It is neither desirable ng__r-pﬁcﬁmble to find the limit of a function by numerical
approach. We must be able to evaluate a limit in some mechanical way. The theorems
on limits will serve this purpose. Their proofs will be discussed in higher classes.
12.1.6 Thegrems on Limits of Functions

Let fand g betwo finctions for which %in:f{x):Land E{J}g(x):M, then
Theorem 1: (i) Ex’:a’,whercp}ﬂmd peER
(iiy lime=e

Theorem 2: (a) The limit of the sum of two functions is equal to the sum of their
Hmits.

Lim[ f(x)+ g()]=Lim f(x} + Limg(x) =L+ M

For example, I;{)uil(x+5)=l;§tllx+l;§ 5=1+5=6




{b)

{v)

(d)

(e)

1))

S
The limit of the difference of two functivns is equal to the differemce of thelr
Lim[ /() ~g(x)] =Lim /() - Limg(x) = LM

For example, EECI_S) =II..i_E| ("‘}_E‘i_f'} 5=3-5=-2
If % is amy real mumber, then
Lim[kf (x)] =& Lim f(x) =kL
For example, Lim(3x)=3Lim (x)=3(2)=6
The limit of the product of the functions is equal ﬁd3lji;r‘lit;§dnﬂt of their limsits.
Lim{f(3) g(a))= Lim f(x) - Lir () = LM
For exampls, Lim(2x)(x+4)=Lim (Zx}la_{n (@+4)=(2(5=10

The limit of the gquotient of the tnncﬂun: is equal to the quotient of thelr Hmiis
provided the limit of denumimllnur is non-zero.

1 Lim
I..Lm[f (")] A A 2(8)=0 in a ncighborhood of

g(x) Lﬂng{x} M’
l'ﬁi"
amdeﬂ -’
For eyl [3:+4]_E‘Eﬂ(3x+4) 6+4_10 _
x+3 Lim(x+3) 2+43 5

Limit of [ f(x)]", where » is an integer
Lim[ f(3)]" =[Lim f(] =£

For example, Lim(2z-3) =(£jﬂ (21-3))3 —(5)°=125

We conclude from the theorems on limits that limits are evaluated by merely
substituting the number that x approaches into the function,




12.2 Limits of Important Functions

If by substituting the number that x approaches into the function, we get (g), then one

possible way to evaluate the limits is as follows:

We simplify the given function by using algebraic techniques of making factors if
possible and cancel the common factors, The method explained in the following
important limits.

122.1 Lim x;: z" =na™" where m is a pon-zero integerand ¢ > 0

Case I:  Suppose n is a positive integer, _
By substituting x = a, we get [%Jform, g0 we make factors.as follows:
¥—ag"=(x-a)x"+ e + @ L ad™)

_ _ 1 2, g2 w1
Limf a =Lim(x a)x™ +¢n""l_ +.£'I X +..ta )
*—a r—a X —a _‘-—-a

=Lim(x" ' +@ * +a' ¥ +..+a")

X =i 2
=g +a @ 4ar " vdd + . a™
=a"'4a" 11 4"+ @ =na" !

Case 11: Suppose n is a-libg‘itive integer (Say # = -—m) where m is a pogitive integer.

1 1 a-x
Now. F—a _x"-a" x g"_ d"
' x-a x—a x-a  x-a

. x"—-a " -1 x"-a"
Lim =Lim
rsa X—d Hﬂ(x"’ a J( x—a J

| i _
a'(ma"') (by Case-1)

-m—L

=—ma

Ijm[x“—a')=m._1 m=—m
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12.2.2 LimY**8~ ~Va Zwtl,_,*ilirlmrwalsm:imitoszger:mdr.‘:»'i.‘l.

xz-+0 X a

By substituting x = Dwehav:[ ]fnm,snmnanahzmgih:nummtur
g (BT Y TR siace

= * Vrta+va) P x(xra+a)
| . A ]
""“(Jx+a+JE
 Tim 1 - 1 = 1
=0 fy+a+da Ja+da e
. x =1 hev s B0
Bt ) Lim 3L o um i

Solntion () Lim ﬁ :i [%J form,

21 D+ gl
E‘J—ﬁxz—x_]iﬂ—?il x{;.ﬂ[j- _]-:f‘]‘—ﬁ x

G X3 {J_+J_)(3{;5JJ}_ iy N
® s 50BN Lim(x +43) =¥3+3=2/3

12.2.3 Limit at Infinity
We have studied the limits of the functions /(s), 70, g () and £ | when x — ofa

number) &9
Let us see what happens to the limit of the finction f{x) if ¢ is + = or —oo {limits at
infinity) L.e., when x — +w or x — — .

{a) Limit asx—+w
Letf(x)=—, whenx#0

This functmnhnnthepmpertylhntihewlue of f(x) can be made as close as we please
to zero when the number x is sufficiently large.

We express this phenomenon by writing le1 =0

X=+0
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(b) Limitasx — —oo
Thiz type of limits are handled in the same way as limits ag x — +oo.

ig, Lim l= 0, wherex # 0.

E—h—s0 ¥
The following theorem is useful for evaluating limit at infinity.
Theorem: Let p be a positive rational number, If x?is defined, then

Lim % =0 and Limi=ﬂ,whm=aiu'myrealnmnber.

x34m pF T3-—m gf

For example, J'I_a;ﬂ?—ﬂandm {i—

12.2.4 Limit of a Sequence
Let {a,} be & sequence, the limit of a sequence {a,} isithe value L that the terms of the
sequence approach as # — «, that 18,

Lim a, = L

Bm
If such an L exists, the sequence is said m.uunverge to L and {a_} is called
convergent sequence. If no such L exists, the sequence is said to diverge.

For example, conzider the sequence {a,‘:l}: Asn—rm,’—ll—rﬂ
n

So, we write Lu:na —Lzm1=0.

I‘“n

2n+3
n+l’

Find the limit of the sequence a, =
We'can simplify the sequence:
3 3
_2n+3 ”(HRJ_ 2+~

gl n[1+lJ e
n n

Asn — o, E—|»[hmd.1—>{],. g0 we are left with: Lima,=w=2
u n B 1+0
Zn+3

P |

=2
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Divergent Sequences: A sequence is divergent if it is not convergent. Divergence

can oceur in the following ways:

e The sequence may increase or decrease without bound (2.g., &, = n® diverges to infinity).
¢ The sequence may oscillate between different valuss and not ssttle near any one
value {e.g., a, = (—1)" oscillates between —1 and 1, so it does not converge).

1225 Methods for Evaluating the Limits at Infinity

In this case we first divide each term of both the mumerator and the denominator by the
highest power ofx that appears in the denominator and then use the theorems on limit.

Sx'—10x* +1
|5 71.11% | Evaluate Lim
st= -3 +10x"+ 50

EFIITT, Dividing numerator and denominator by x",w&g&

5 10, 1 -
s-102+1 . LTS w0 .
= = =—00 . lm
a3 +10x7 +50 s _, 10 50 —3+0+0 =
x X
; 45t -5y
E le E o g T
vahume Lim 4552
EISITTT, Dividing numerator and dénominator by 5°, we get
S
. 4x" -5 ’ Tk 0- 0
Lim——— —  —=Tim——* % - o
a2 30 42 J IS 4 21 34040
¥ 7
Z i ils| o Evaluate:
. . 2-3x . 2-3%
(i) Lim——— (i) Lim
e 34 45 svie f3 1 45

P () Hete Ve =|x=—xa8x<0

Dividing numerator and denominator by —x, we get

_2 3
2-3x _ .. “x'° _ 043

: 3
le—: —t —
53— "34_4:2 H—nJ1+4 .J0+4 2

I!
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(ii) Here Jx_z=|x‘=.r agx>0
. Dividing nmmerator and denominator by x, we pet

2 4
Lim 2-3x = 13 x _ 0-3 =i
CRa R O L L T i -JU'+4 2
N

R =y -+o0 H

By the binomial theorem, we have

(11) mteaf L) oD 1 =D A,
= l+l+zl![1—%J+ %(1—%)[1—%}

When s — +e0, =, 2,2, . all tends to zero; therefars
A A A

122.6 Lim [1-1- 1]' =

I..‘im[1+l j‘ == 1+1+l+l+.i+
x+iml [ 2! 314!

=1+1+0.5 +0:166667 +0.0416667 + ... =2.718281 ....

As approximate value of e is 2.718281.

]ﬂ _ We can also show that
=¢

m(1+1j==.
n—a—= n

Lim(1+1

B— - n

1
Deduction: Ejﬁ(l#.r)‘ =e

Wo know thit m[uﬂ s 0

n—#o0

Piin=— @) then x=—
= n

1
When 7 —o0,x—( 80, Iim[1+l].=Lim(l+x)5
T — n

0

1
= ]'_jm(1+x); v Lim [1+1].=E
0

Pl ol n

Hence I..;i:.'l:l(l+x)i =g

x =0
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a*—1

12.2.7 Lim =log, a
i
Put &—1 =y ()
then a=1+y
So, x =log,(1+y)
From (i) whenx — 0,y — 0
I-‘inﬂj-a!_]-:LinE. y =Li n]_;
20 x 30 log,(+y) 70D 4 14y
Y
=Lim : . =lo a(Iﬂﬂ#ﬁ=ﬂ
30 1 IDE‘,E g‘ ¥+ vy
log, (1+ ) '
. [ ef=1
Deduction: IJ]]& = log,e=1
=k x
. & -1 el
W&kﬂﬂw‘hﬂtlﬂﬂg — =]ogag (1)
£ x
e . (e -1
Puta=em(1)weknow£..%[T]= log, e=1
Important Results to Remember
i s (1
LTt 6 | Express each limit in terms of e.
- : i v 1
® _lgH_-@;[l_wt;]h (@ Lim(1+2n)-

EFIMIT (i)' Observe the resemblanc of the limit with m[1+1]' =e
[ ] n

il ]

(1+%]’.=[[1+3J;I= g |

a2 - pf 12 ] - i3
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1
(ii) Observe the resemblance of the limit with I;'i_.l;'gl.(1+x)x =e
1 1P
EI_P'}(I+?.H)H = [;ﬂ[(Hzn)h}
put m=2n, when za >0, m—0

1 . 1
ET(H 2} = ﬂ[(u m).]‘ =
12.2.8 The Sandwich Thearem
Let f, g and k be functions such that f{x) < g(x) < A{(x) for all numbers x in some open
interval containing “c”, except possibly at ¢ itself.
Ifl.mlf(x) L and leh(x) =L, then Img(x]

Many limit problems arise that cannot be directly evalultedby algebraic technigues.

They require geometric arguments, 50 we evaluate an important theorem.

12.2.9 If @ is measured in radisn, then L}m-‘m—ﬁ =1.

d
Proof: To evaluate this limit, we apply 2 new techmque. Take 6 be positive acute
central angle of a sector of a circle with tadiug » = 1. As shown in the figure, 045
repregents a sector of a circle. Join 4 and B and extend OB to D such that O4 | 1D,
Also draw BC | ()C on OA.
Given |OA4|=|OF| =1 (radii of unit circle)

In the right AOCB, sme=%=|3_c:'|
In the right AOAD, tanf="— =| AD|
@) Areapfwﬂﬂ=%|a||3—6|=%(l](sine)=%sinﬁ

@) Areaofsector oas=%#e=%axe)=%a and

i) Arexof AOAD:%|&||E|= %ﬂ)(mn B):%tanﬂ

From the figure we see that 0

Area of ACAR < Area of sector OAB < Area of AOAD r=le A
; 8 4 Fignre 12.4

= -snd < - < -tanb

2 2 2




As ki 0 is positive, mondivisi:mby%sinﬂ,weget

l«:i«:L {D-:B-:E)
gin® cos@ 2

e, 1>¥>msﬁ or Gﬂﬂﬂ‘{?{l

when @ — 0,cos8 — 1

Since #iasaﬂdmﬁched between 1 and ® quantity

approaching 1 itself. So, by the sandwich theorem, it must also |
gin ©

nppmachlthatm,LnnT 1

Example [ 71 001 E}]?

sin 70
)

Seintion Let x = 78, so that 3%

whmﬁ—rﬂwﬁhavex—rﬂ
sin 70
a0 B =Ho x _TEE' x —(7)(1) 7
7

LTI Bvaluate Tim =2

1-cos 0. l—msﬂ l+c08 0 1—cos*@
B i} l4+cos 8 9(1+GDSB]

_sin’® H[sin eJ 1

~ ®(1+cos §) 8 Ml+cos®
m[l'm H] Lim sin 8- Lim ®20. Lm:{ ! ]=(n)(1)(ij=o
B0 8 210 #0 P =0l 14+cos B 1+1

P EXERCISE 12.1 J

1. Find the limit of the following sequences if exists:

n+3 . 2n+3 Sn® . n—3n+1
= = = d=—" "
0 q, n+l @ 2, +1 () 2a+3 ) 4, 2 +n+4




. Limdt of
it (DY

Ll

<m>

Evaluate each limit by using theorems of limits:

mamenates (100

) Lim(2x+4) (i) Lim(3x*-2x+4) (i) Limve+x+4
(iv) I;‘:‘E"f"'q' (v) I;iu}(v'x’+1—«fx’+5) (vi) Lim zzsx;t:‘t
Evaluate each limit by using algchraic techniques: |
: x—x X —=5x+6 ; -8
L 2=+ x+1 (@) r—rﬁ[f 2x-3 ] ) Eﬂ'{xz —__5x+6]
Lim ¥ =357 +35-1 » —6x+12x~8 { x*-1
o <>£ﬂ[ ) ot
x-2 \‘I+ 'J_ Al . xX-a
ii) xﬂm_ﬂ (ﬂ-‘-‘-} B (ix) I;E'n'!x"—a'
Evaluate the following limits:
@ Lim 0% @) LmaEs @iy Liml=%%9
30 x 40 3 p—+0 xm O
(iv) Limsinx cos X ) Immaax—msix (vi) Limtanx—l
x_,; _T—E g O _‘J' ;_.; P
4 4
" 1—cos 2 x S s COROX—CcOShX ol |
W (O ama @ W
®) Limf—xl_ogx}?élngx—ﬂ ) Lmlx(? 1
x—+3 x-3 =0 | —cosx
Express each Timit in terms of e,
@ Lim{1+ij" (i) Lim(1+1T (i) Lim[-l]
L -] n & =p n e el n
1 4 _ 2
(iv) Hm[1+—I (v) Lim(1+—]‘ (vi) Lim(1+3x)*
iz In —¥+m n =40
1 .3
G = " £ —e X
(vii) Lim({1+ 2x%) (viif) Lim = (ix) EE(H.:)'

1 1

. er—1 R
® W <0 B e
e*+1

e +1

x>0 (xii) Lim

& —é
z x—2
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12.3 Continuity and Discontinuity of Functions
12.3.1 One-Sided Limits
In defining Lg.nf(x), we resiricted x in an open interval containing ¢ i.e., we studied
the behaviour of f on both sides of ¢. However, in some cases it is necessary to
investigate one sided limits that is, the left hand limit and the right hand limit.
() The Left Hand Limit
Lin;f(x)=Lisrend ag the limit of f{x) is equal to L as x approaches ¢ from the left

1.¢., Tor all x sufficiently close to ¢, but less than ¢, theva]uacfﬂx)mnbemadeas
close as we please to L.

() The Right Hand Limit The males &)
Lim f'(x) =M is read as the limit of /{x) is equal to M as» ing the left hand
i and the right hand limits

approaches ¢ from the right i.e., for all x sufficiently close to | ;o the same 5z wo studisd
¢, but greater than ¢, the value of f{x) :anbemade as close | m calcolate Timits in the

28 we please to M. preceding section,
12.3.2 Criterion for Existence of Limlt oi' a Function
Pﬂf(x)—Lleﬂdmlyleg!f(x)—}ﬂf(x) =L
Determinewheﬂ:lezr_ﬁ_{a}f(x) and Li_ﬂf(x)st,when
2c+1 if 0Sx<2
fx)=47-x,if 2<x<4
X if 4<x <6
Bolution ¥¢) L@f(¢)=1i::;(2:+1)=4+1=5
' Lim f(9)= Lim(7-x)}=7-2=5

Since Lim f(x)= Lim f(x)=5

=% E.Elf(x)eﬁﬁtsandis'equaltos.
@  Limf(x)=Lim(7-x)=7-4=3

Lzm f(x)=Lim(x) =4

Since Lim f(x)# Lim f(x)
Therefore, I:E{l f(x)does not exist,




<> D |
1233 Continuity of a Function at a Point

(a) Continmons Function

A function f'is said to be continuous at 8 number "¢" if and only if the following three
conditions are satisfied.

() fle)is defined (i) Lim f(x)exists (i) Lim f(x)=f(e)
(b) Discontinuons Function

If one or more of these three conditions fail to hold at “¢", then the function fis said to
be discontinuous at “¢”.

Consider the function f(x)=%, discuss the contifwity of fat x= 1.

Hmﬁ(l) 18 not defined.
=» f{x) is discontinmous at 1.
For f(x)=3x"—5x+4,discuss contimuity of fatx= 1.
Solution Pei f(x)=1;i_:ﬂ(31’—5x+4)=3—5.+l4’5.-—':2-'m1d fh=3-514=2
= LmfG)=/0
Therefore, f(x)is continuous atx = 1
Example[¥] Discusslheoontinuity-pﬁhsfumﬁ,msf{x)andg(x)atx=3

289
(a) =153 if x#3
121 8 i %=3

(b) g(x)={% if x#3

Solution YEYN 7€) Rt

=Lim(x+3)=3+3=6
As  Lim f(x)=6=f(3)

f(x) 18 continuous at x = 3. It is noted that there is no break
in the graph. Figure 12.5
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(b) g(;:c}=ﬂ if x#3
x-3

As g(x) is not defined at x=3
= g(x) is discontinuous at x=13
It i8 noted that there is a break in the graph at x = 3 near
x =3 a& shown in the Figure 12.6.
IZTTR13|  Discuss continuity of f(x) at x =3, when
x-1 , if x<3
16 {2x+1 if x23

EFTTTTY A sketch of the graph of fis shown in the Figure 12.7, Wemseethatmere
is a break in the graph at a point when x = 3. L\
Now f{i3)=2(3)+1=7
= Condition (1) is satizfied.
Lim f{x)=Lim{(x—1)=3-1=2
3T Y

2,

(G, 3)

v

Lim f(x) = Lim(25+1) = 6.+1=
Lim f(x)# Lim f(x)

i.¢., condition (ii) is not aatlsﬁed.
: Lﬂ S (x)does not exist.

Hence, f{x} is not continuous at x =3

V" EXERCISE 122 _{

I. Determine the deft lifind limit and the right hand limit and then, find limit of the
following fymctions when x — ¢.

-9

O f@)=2+x-5,c=1 @ S)=""7 c="3
(@ f()=x-5|,e=5
2. Discuss the continuity of flx) atx=¢
3x-1if x<1
| 24532y o e L iaet.om
D f= Buudl Pilugssadd | (ii) x)= if x=1., €=
2x  if x»1

3x if x<-2
3. Ef(x)={x*—1 if —2<x<2 Discusscontimityatx=2andx=—
3 if =x22




- Limit of
Unit ) Frrint= g <wi> mamemaces (1
x+2 x<-1
4, 1If f(x)=
c+2 x>—1
find “c” so that Luxz_ f(x) exists.

5. Find the values of m and a, so that given function f'is continuons at x =3
mx if x<3

O f@={ = if z=3 @ f(x)={ " i’:;
_2x+9 if x>3 %
2x+5—+/x+7 o
6. f(x:j: xr—2 - .
k i =2

Find valoe of £ so that fis contimuons x= 2.

2x+3, x2<1
7. Given the functi x)= 3
ven the fimetien f(x) {—x+4. il

Discuss the limit and continnity atx =1~

12.4 Application of Transcendémtal Functions to Limits and
Continuity on Real World Problems

Limit and continuity of transcendental functions are findamental concepts in caloulus
with numerous real-world applications.
These concepts help us model, analyze and solve problems in vations fields such as
growth and decay, finance; economics, surveying and predicting long-term stock
prices.
Growth and Decay (Radivactive Decay)
The radioactive decay of a substance is given by the finction 4(2) = A2, where 4, is
the initial amount of the substance, & is the decay constant, and ¢ is the time in years.
Find the limit of the amount of substance a5 t —» .

We need to compute the limit: II.EIA(I}=I;_EEA°€”
As t>w,e™ 50, 80 I;i_EAoe'"=Aﬂx0=ﬂ

Thus, the amount of radioactive substance approaches 0 as time increases indefinitely.
Finance (Compound Interest)

The value of an investment grows according to the formula for conmtinuous
compounding A(f) = P_e”, where P, is the initial principal, r is the annual interest rate,
and £ is the time in years. What happens to the value of the invesiment ag # 3 o ?
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We maed to compute the limit: Im:ui(r) lePe"

Since " —o0as ¢ —» oo for any positive #, the value of the investment grows without
bound:

Lim Pe" =0

[ =
Thus, the valug of the investment increases indefinitely as time approaches infinity.
(BT T1116| Economics (Supply and Demand)
In economics, the demand fonction D(p) decreases as the price p increases. Suppose
thﬂdemmdﬁmcﬁmisgimbyﬂtp)=%,wherepmlhepncemduﬂm Find the

limit of the demand as the price becomes very large, Le., Lim D{p).
F. e .

7S, Lim D(p)=Lim o

Frw = ptl
As p—»oo, the denominator becomes very large, m}mL'fl
. i 4

Thus,asthepncebecumﬁvmylﬂge,thedmhandappmmhﬁﬂ

1 CL0E17| Astronomy
The apparent brightness B(d) of a star'decrmes &3 the distance from Earth increases

fnﬂomngihamvemesqwelnwﬂﬁd} =— WharcLlsthestar'slummoslty Find the
limit of the brightness as & —00.
Lim B(d) < Lim

As d 5 0 the denominator becomes very large, so:
L
=0

: d—:nn?
Thus, as the distance increases indefinitely, the apparent briphtness of the star
approaches 0.

P~ EXERCISE 123

1. A substance decays exponentially following the formula A(f) = 4, ™", where 4,
is the initial amount. Find the limit of A(f) a8 1 - w.

100, 000

+0g oy -

[

A town’s population is modgsled IJ}P{:]— What is the long-term

population as £ —» 0.
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3. A company’s weekly sales (in thousands) follow the functiem §(f)= W

i8 the limit of 5{f) as t — = and what does it represent?
4. Signal strengih S(d) at 2 distance & from s tower is modeled as S{d}—lz—m
() Whatis the signal strength at d= 107
(i) What happens to signal strength a8 d —» oo ?
5. A stock price grows according to the function P(f)= 50e™!
() Find the limit of P(?) a8 ¢ —> .
(ii) Calculate the price after 10 years,
6. The factory’s cost function is given as: e
1054500 if  x<100
12x+300  if x>1;;§_~_:"‘
Is the cost function continuous at x= 1007 .
7. Inflation is modeled by I{f) = I, e"m’ Q}hﬂref is the initial price index and ? is
the number of years :
(i) Find the inflation rate nﬂﬂ'iym if fo =100.
(ii) What is the expc::tedpnm index after 10 years?
8. The costto pradueexumisls
[55420 i x<10

(I} 16x+10 if =x>10

lsthemst:ﬁﬁéuonmnﬁnuuus atx =107



Differentiation

INTRODUCTION

The ancient Greeks knew the concepts of ares, volume, centroids etc. which are related
1o integral calculus. Later on, in the seventeenth cemtury, Sir Isasc Newton, an English
mathematician (1642 — 1727) and Gottfried Whilhe G, W. Leibniz, a German
mathematician, (1646 — 1716} considered the problem of instantaneous rates of change.
They reached independently to the invention of differential calculus. After the
development of calculus, mathematics became a powerful tool for dealing with rates
of change and describing the physical universe. ¥ ;

13.1 Tangent to a Curve at a Point {

Let P(x, f(x)) and Ox + &, f{x + &)) be two Qfx + &g flx + fix))
points on arc A8 of graph of f defined by the *

equation ¥ =f{x) as shown in Figure 13.1. . 4 T L

Where 8x is the increment in the value 'of x (read s
28 delia x) o/ 75 M N

The line P is secant of the curve and slope of Figure13:1

secant ling passing through P(i‘,_—ﬂx)) and ({x + 8x, ix + 8x)) is:
= RO i Jx+8x)—f(x) (1)

PR S
Where meecis slope of the sccant line, ¥
Revolving the seeant line PO towards
P, some of it successive positions
PQ, PQ,, PQ,, ... arcshown in the
Figure 13.2. Points Q.(i=1, 2, 3, ...}
mf getting closer and closer tn the ﬂ::; L
point P and PR are approaching .
ZET0

In other words, as &x — 0, the point O approaches P, and the secant line becomes
the tangent line. The revolving secant line becomes the tangent line P7 at P while &x

Mo

-
e
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approaches zero, that is,

momLi JETI@) g

where m, denotes the slope of tangent line. We see that m is the limit of m_ as O
approaches P along the curve y = f{x).

LETT M 1| Find the gradient and an equation of tangent line to the graph of
fix) =x*2 at the point P(-1,-1),
BRI, To find the gradient or slope of the tangent line at point (~1,-1), putx= —1

in equation (2)
— Lim f(_1+ax)_f(_l) S N S T 7
i Sx N g\ S
. 4 y=flay=x -2
. (1+80) -2—((-1)*-2) I W
=i:r—bn EI | ﬁ:;é: ".E 2 ,"jl
=Lim1-zax+ax‘—2—(1—z) ¥ ‘:,,\ ! 5
e 0 Sx . '-4-'3-2‘-‘1? 12 3 4
- A -
g 2R 241 ISt | L“'_E- ||
i e Bx &ﬂ- &x =3
-4
=LimM=Lim(x—2+ﬁx)=—2 e
B0 & &0

Now to find the equation @-Etﬁj:gant line we use the point slope form of equation of line
with slope =—2 and point (1, —1)

or y=—2x—3, which is the required equation of tangent line.
The graph of f and tangent line are shown in the above figure.
13.2 Derivative as the Limit of a Difference Quotient
Let fbe a real valued function continuous in the interval (x, x,) < D, (domain of f),
then difference quotient Sx)-f(x) &)
X —X
represents the average rate of change in the value of fwith respect to the change », —x
in the value of independent variable x.
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If x, approaches tox, then Lim< *1)=/ ()

52  x—x
provided this limit exists, is called the instantaneous rate of change of fwith respect to
x and i written a8 f'(x).
If x, =x+8x ie, x—x=48y,then the expression (i) can be expressed as

S(x+8x)— f(x) (i)
fx
and Ijmf(x"'a;z—f(x) (iii)

provided the limit exist, is defined to be the derivative of f (ot differential cosfficient
of f) with respect to x and is denoted by f'(x) (read as *f— prime of ™). The domain of
J' consists of all x for which the limit exists. If re.D and f'(x) exists, then fis said to
be differentiable at x. The process of finding f7 15 called differentiation.
13.2.1 Derivative as the Rate of Clfanpe of Velocity
The rate of change iz a fundamental concept in deseribing the motion of an object
moving in a giraight line, In physics; this is typically analyzed using position, velogity,
and acceleration, which are all related through derivatives (rates of change).
The position versus time graph provides a simple interpretation of the average velocity
over a given time interval.
Suppose a particle moves in a straight lime and its position at fime ¢ is given by the
function s(f). The average velocity over the interval from f to ¢ denoted by v, is
defined as:
5(2)—s(x >

Vo= (ﬁ:_f( ) @)
Equation (i) also represents the slope of secant line passing through the points
(#.5(5)) and (¢, 5(z,)) . If the interval ¢ — ¢ is not small, this average velocity does not
acenrately represent the rate of change at time £.
To illystrate this, consider a particle whose position at time ¢ (in seconds) is given by a
function s(f) =¢2+ ¢ in metres. The average rate of change over various time intervals




e (L

starting at ¢ = 3 seconds is shown in the table below:

<)

-m-muu

Imterval| ¢=3secato =15 secs =13 seca to ¢ = 4 secs =3 gocs o t= 3.5 seca
63
Average 3(5)—3(3)=30-12=9 3(4)—.9(3}=20—12=s ,(3'5}_3{3}_?—12_?5
veloclty 5-3 2 4-3 1 35-3 05
F &
¥y
so|” sol” |
40 40
30 30
20 a0l
10 {1, - = —
9 0123435 6

We observe that these values are not closely approximate the particle's velocity at

exactly 3 seconds. To obtain a better approximation of velocity at x = 3, we use smaller

intervals:

Interval Average velocily

2 11

f=3gecetof=3.1 1015 +3.1N1 = 0.1 =71
3.1-3 0.1
= =

=3 smi=30l s |[HDWANL-12_ 0001
301-3 .01

§ e i =001 3k {(3.001)" +3.001} - 12 by ﬂ.m7m1= 7,001
3.001-3 0.001

We see ag the length of the time interval decreases, the average velocity becomes
instentaneous velocity al'7 = 3. Based on the trend, we esiimaie the instantanecus
velocity to be approximately 7 m/sec.

Thus, over 2 sufficiently small interval, the velocity changes negligibly. If ¢, is very
close to 4, the average velocity over ¢ —; approximates the instantaneous velocity at £,
Ags ¢, approaches f, the average velocity i3 called the ingtantaneous velocity.

This is similar to approximating the slope of a tangent line by calculating the slope of
8 geeant line. Mathematically, the inatantaneous velocity denoted by vae 18 given by
the following limit:

» =%w (Provide the limit exis)

For convenient, if ¢ = ¢+ 5¢, then a8 4 = ¢ =35¢— 0, thus above equation becomes:

. };’.ﬂ 8t + 5;: —5(2) (i)
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In other words, the instantanecus velocity is the derivative of the position function 5(x)
with respect to time.
A particle moves along a line such that its position after ¢ hours is given
by: s()=4f +2¢+ 1{in miles)

(a) Find the average velocity over the interval [2, 5]

(b) Find the instantaneous velocity at £ =3
ETUTTTY, (=) given pasition function s(f)=4F +2¢+ 1, where 2<¢<5

The average velocity over the interval 2<7< 5 is:

s5)-s@) 4(5)’+2(5)+1—[4(2)’. +2(2)+1]
S 5-2 3
_111-21_ 90

3 3 miles/howurs

(b) Instantaneous velocity can be found using.thE'-'formula

Average velocity—v ”

Instantaneous velocity= Y T+ 80 280

B at
_ A(3+80) +2(3+80)+1- 43)*+2(3)+1 |
=Lim -
&30 ot
=Hm‘4(9+66t+5t‘)+6+2§:+1—43
B30 ¢
. 3624514+ 45* + 6+ 25:1+1-43
=Lim
30 Fa¥3
2
=Lim43+266t+4ﬁf —43= Lim26&+4ﬁf
) &0 Et &+ D ﬁr
im0 (264 48)= 26
&0 B &0

Thus, instantaneous velocity at =3 is 26 miles/hour
13.3 Process of Finding Derivative f(x) by Definition
12.3.1 Notation of Derivative
Several notations are used for derivatives. We have used the functionsl symbol f'(x),
for the derivative of fat x. For the function y = f{x).
y+8y=f(x+ &) (iv)




Dividing both the sides of (iv) by ix, we get

dy _ fx+8x)—f(x) )
ax ax
Taking limit of both the sides of (v) as & — 0, we have
lei o Limf(x+ &x) —f(x) (vi)

W>0fy &0 dx
Lim ¥ i denoted by ¥, 50 (v) i writien 38 & = 11

ke—=0 Sy

The symbol %iaumdfnrthcdm-ivnﬁva of y with respect ta ¥ and hers it is
‘*I_\ill-f-'-\‘-._f

not a quotient of dy and dx. %is also de:notedhyy'l.r:*;;;”r

y 7
J"': V\—.'J

Now we write, in a table the notations for derivative of ¥ = f(x) used by different
mathematicians:

Name of mathematiclan | Lelbniz | Newiton | Lagrange Eunler
Notition used for desivaitive % & % | r@ery | 1@ D)

If we replace x + dx by x and x by a, then the expression f (x + &x) — f (x) becomes
S(x)—f(a) and the change & in the independent variable, in this case, isx—a.

& X—da

Teking the limit of hie expression (vii) when x — a, gives Lim? &= @ _ py
X 4 X—

Here f'(4)is called the derivative or gradient of fatx =a.

13.3.2 Firnding /'(x) by Definition of Derivative

(Given a function f, then f (x) if it exists, can be found by the following four steps:

Stepl:  Findf(x + 8x)

Step II:  Simplify /(x + &) —f(x)

Step IIE: Divide f(x + &x) —f(x) by 8 to got f("”a;‘z‘f("‘) and simplify it.

Step IV: Find Ijmf(x+3;:—f(x)

The method of finding derivatives by this process is called differentiation by definition
or by ab-initio or from first principle.
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Find the derivative of the following functions by definition
@ fl)=¢ b fe)=x

@ 709=c

(i) fix+8x)=c

(i) fx+d&)-fx)=c—c=0

apy SGHE)-Fx) 0 _

(iii) % e

. o SEFE) =) _ e

(iv) Lim = = Lim(0) =0

-0

Thus, £(x) = 0, that is, %@:n

(b) fE)=x
D fl+8x) =+ &y
(D) fle+8x)—Ax) = (x+ &) — 2% =27 -+ 2ol +(8x)? — x* =(2x+ 8x) &ix
) SO S @488, G| (5x0)
3x 8x -

(iv) mf (”E;:_f (x) = Lim(2r48x) = 2x

e, =2
Find the derivative of v/ at x = g from first principle.

EXTETRA I f(x)=+/x , shed
® f(x+5‘x)=Jx_+ai and (i) flx+80—f(x)=x+ar—fx
_ (o —fa)x+ -+ ) (muonahzmg me]
Jr+8c++/x numerator

x+dr—x
Jr+8e+40x

N S
ie., f(x+sr)_f(x)_m+ﬂ(; (1)
(iii) Dividing both sides of (1) by 8x, we have

Jx+8x) - f(x) _ bx
8x Sr(v/x+dx +/x)

1
N P P

(k= 0)
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(iv) Taking limit of both the sides as ix — 0, we have
L SO +89 =7 =Um[ 1 )

B0 dx 3240 —\hﬁw&—hf;
. - 1 _ 1 ' =L
ie., f(x)_J;+-J; ZJ; 3 (x:‘ﬂ'} and f(ﬂ) Z'JE

Alternate method: Puttingx = gin f(x)=x, gives f(a) =Va
8o, S~ fl@)=vz-a

Using alternative form for the definition of the derivative, we have

S@)-f@) _Vx—a

Xx—a X—a
_ r-a)x+/a)
(x-a)x ++/a)
- ¥& _ 1 Ny @)
(x-a)x ++a) Vr+a ©
Taking limit of both the sides of (2) as x—a; gives

{rationalizing the mmmerator)

. f@-f@) _,. 1¢ v 1
R xoa reiyaida Ja+da
. _ 1
ie., f{a) = Z—J;

which is the gradient of fatx = a.
Example F]) @RI % at x=— 1 by ab-initio method,
X

SO Here, y = 1, 50 @
1 "
J‘+3y=m (ii)
Subtracting (i) from (ii), we get
S 1 _l_.tz—(x+ﬁr)1

T+t) # P(e+dn)
_ x4 (x+ &)} {x—(x+5x)}
- 2 (x+8x)?




_ (2x+Ex)(-8x) _ —Ex(2x-+8x)
T Pa+i) Pl &)
Dividing both sides of (iii) by 8x, we have

Sy —Sa(2x+&)  —(2x+8)
& Plx+@xf-8r Flx+&)P
Taking lLimit as fx — 0, gives
Lim ¥ < Lim ~25+ 89
B0 8y &0 x"(1+8)°
e ..
*(x%)

PO . e .
ke Mgl Tyt

(Using quotient theorem of limits)

The gradient of fai x =—1 ism=2. ,
13.4 Derivation of x* where n € Z
(=) We find the derivative of x* when # is positive integer.
(b) Let y=2x". Then
y+8 =(x+8x)"
and By =(x+EE)"—a"
Using the binomial theorem, we have

5y=[x" ot B+ "("7;)::'-’(5:)=+ +(ax)*]-x"

ie., 6y=ﬁx|:nx"" +"("—2_!1)x""- Sx+ - +(Er)"1] (i)
Dt vicktng bothi nides of () iy &x; giver
gx—y= g} +"(”—2'|Dx"—=- St e (B (i)

Note that each term on the right hand side of (if) involves Sx except the first term, s
taking the limit as Ex—rD,weg%:mH

Asy=x" g0 %(f):n .y




(b) Lety=x"where n is negative integer.
Let # =—m(m i8 a pogitive integer). Then

y=x" =% @)
__ 1 :
wd I =y @
Subtracting (i) from (ii), gives
I TR
TR P~ 2"+
2" —[x" + ! 5x+7m(";!_l)x""(ﬁx)z+ EGo
B x"(x+ &)
(expanding (x + &x)™ by binemial theorem) |
[mx"" .l PUICT Y A (ﬁx}"")
e 8 " A
X" (- 8)”
and E=_—l (},&E51+Mf'l_ Bx+ _,_+(EI)R-IJ
B 2 (x+or) 21

Taking limit when &x — 0, we get
@ =1 | po! (gllferme contaning &x vanish)

dy X" x™
=—mx" !
- _m[-u)'_’-l
dx_ nx"'l [ —m=an]
d(x}" =4 nxn—l
dx

So, we have proved that %(xn)=nx=-1, ifne?

The above rule also holds if » € 0-Z, i.e. for rational powers.

2 2_ :
A Bt B
dx 3 353
The proof of %(f):m'—l when pe () — Z is left as an exercise.

For example,
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13.5 Connection Between Derivatives and Continuity

Calculus is a powerful branch of mathematics that allows us to study change and
motion. Two of its foundational concepts of continuity and derivatives are deeply
connected. While each concept has its own definition and application, inderstanding
how they relate to each other is essential for solving resl-world problems in
mathematics,

As discussed in previous unils, a fimction is contimuous at & point if its graph has no
breaks, jumps, or holes at that point, On the other hand, the derivative of & function at
a point measures the instantaneous rate of change or squivalently, the slope of the
tangent line at that point. However, this definition depends on the function being well-
behaved around the point. This leads {o a well-known result: |

If a function is differentiable at a point, it must also be confinnous there. This means
that differentisbility implies continuity, but the reverse i8 not necessarily true. For
example, consider the function f{x)—Ix| , clearly this function is continuous at x = O(see
Figure 13.3), Now we check the differentiability of f{x)=Ix| atx=0.

J®) =|x
J0)=[0|=
£10 + 82) =[0-+ 8 = o 1
0 f(0+d&)-f(0)=|&|-0
L SO+E)-fO) |8
ox 8 4 ¥
E <
Thus f(x)=Lim_s
Because |dx| = 8x when x>0
and [ =—8%- when8x<0, ¢ Hpmeisd
8o, we consider one-sided limits
o L TS and fi OO
=0 Ar &0 fx -0 Bx Be—0 ax
This cishit hosviel sl Lok oo Tt e mit egial, thewetore; the ]_mlzldnesnotmst
-+

This implies that derivative of f at x = (t does not exist, and thus, there is no tangent
line to the graph of fat this point (see Figure 13.3). However, the derivative exists at
all other points of fi.e,, it is 1 on the right side and —1 on the left side. A function can
be continuous at a point but not necessarily differentiable there.




¥ EXERCISE 13.1 4
1. Find by definition, the derivatives w.r.t. ‘x’ of the following functions defingd as:

® 2+l @ 2-Vx cﬁi}Ji_ @) x(x-3)
X

2. Find g from first principle and find gradient of the curve at the given point:

D Jx+2atx=6 (ii) mﬂx a \};,

2 (f)
3. (i) Find the derivative of x* atx— 8 from the first prinni?lg‘;,,_,

(ii) Find the derivative of x* + 2x+ 3 by definition.  ~ |~
4. Find from first principle, the derivatives of the ﬁ}]]ﬁamv“g expressions w.r.L their
respective independent variables:

O (x-2° @ @+ ﬁg}?&a‘w+a)7

s. Findlhegadimtandequaﬁunuﬂhctp.ﬁmﬂjnemy=3f—4x+Ia.tx=2.
6. For the function f{x) = 2+, caloulale1he equation of the tangent line at x=—1.
7. Find the coordinates of thcpomj;cff;\tangﬂncy and the equation of the tangent line

for fr) = 2xtl atx=1. N\

8. Fmdthegmdmntot‘!hsumef{}) It +2ratx=1.

9. Find the gradient mdcoqd‘étumon of tangent line to the graph of f{x)= Jx at
x=9

10. The position of __nftcrrhﬂummgwcnbr #(f) = 28-3¢ + 1 (in kilometres)
(i) Findthea velocity over the interval [1, 4]
(ii) Fmd;i‘jyhsimnanenusvelumym—

I1. Asmn@ilﬁnmupwm'dsmdmhughtaﬂerrswmdsmgnv-hy
s(f) = 162 + 320+ 10 (in feet), Find the instantaneous velocity at ¢ =

12. The eutdoor temperature (in °C) over time is modeled by: T(r)——r’+ 121+ 10,
where { is the time in hours, Find the instantancous rate of change at¢ = 2.

13.6 Theorems on Differentiation
We havs, so far, proved the following two formulas:

1. g(c)zn that is, the derivative of a constant function is zero.

2. %(f): nx*"', power formula (or rule) when » is any real number.




Now we will prove other important formulas (or rules) which are used o determine
derivatives of different functions efficiently. Henceforth, in all subsequent discussion,
1, 2, A etc, 8ll denote functions differentiable at x, unless stated otherwise.
3. Derivative of y = ¢f (x)
Proof: Lety =c¢f(x), Then
() ytdy=cflxttr)and
(i) y+8—y=cflxt &) —cflx)
or 8y =c[ flxt &x)—f(x)] (Factoring out c)
(iiD) %’: cl:f(x‘F ﬁx}—f(x)j|

&x
Taking limit when éx — 0 |
(iv) Eﬂ%=yﬂ = f(x+5;2—f(x) _ e%f(ﬂﬁg_—f(x)

A constant factor can be taken out from a limit gign:
Thus, & o162), thatis [ ()] = o (2) O Ll =c-2 110

. : A

[T Caleulate & (3°)=3 % () (Using Formula 3)
4 1

Solution =3x %xg_l =4x3 (Using power rule)

4. Derivative of n sum ora difference of functions
If f and g are differentiable at x, then f+ g, f— g are also differentiable at x end

[+ 2] = 10+ 2'(x), that is,%[f(xhg{x)] =£Lf(x)]+%[g(x}]

Also [ F()=g()] = (-2, that s, 2 [F(2)- g ()] =2 F @2 [e()]

dx dx dx

Proof: Letgd(x) =Ax)+ glx). Then

(@) ¢br+dx) =flx+ &) +glx + &) and

(i) $le+8x) —¢lx) =S + &) +glx + &) — [fx) + g(x)]

=[f(x+ &) —f(x) +[glx + &x)—g(x)] (rearranging the terms)
i) PEHE PG _ S8 /() g(x+8)—g(x)
dx e &x
Taking the limit when dx — 0




(iv) ij#(x+ﬁr) ﬁ(x) |:f(x+ax)—f(1] |, glx+ax)—g(x) ]
=

x>0 A Bx ' Bx
_ra ) —-fx) . g(x+Ex)—g{x)
- fx Ha S

(The limit of a sum is the sum of the limits)

¢'(x) =f"(x) + g'tx), that is [ f(x) +£()]' = f"(x) + g' &)
or LI f(+g6]= L/ Ig0)
The proof for the second part is similar,

Sumordiﬁermcafmmﬂamheenendedtoﬁnddmﬂqﬂwofmmﬂ:m
two functions,

7| Find the derivative of y= %x‘ +§x’+%_.f+ 2x+5 wrt x

"--.
=

Solution y=§x‘+gx3+lxz+1¥'+5
& 3 2
Differentiating with respect to x, we have -
dy _ 4[3 ¢ 2;’+ x’+2x+s:| d[Ex‘]+£(Ex’)+£(lx’]+i(2x}+i(5]
(4 e

de  dx de\3” ) ax\2
(Usmgfnnmlaﬂ-)
=%%(;“ﬁ%i(x’)+%§(x’)+2§(x)+o (Using formula 3 and 1)
=%(4x"1)+§(3f"1)+%(2.x’")+2(1.x1'1) (By power formula)
=30 +2x 4+ x+2

[T 8) Find the derivative of y = (2 + SY® + 7) with respect to x.
e y=02+ 8P+ =r+5° + 2 +35
Differenﬁaﬁngwiﬂ:respecttnx,w:get

dp_d
= dr[xs+5x3+1f+35]

_d s 4 .2 d :
_‘ﬁ(x 45— ()+T )+ —(35)  (Using formulas3 and 4)

=5 453+ Tx2x* 10
=5x"+15x7 +14x
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Find the dezivative of y = (24 + 2)(x —/x)

y=(2Jx +2)(x—x)
=2(x +1)- Jr(Vx - = 2Jx (W + Dx 1)

k] 1
=2Jx(x—1)=2(x? —x?)
Differentiating with respect to x we have

ALY

& dr
ol 3 d 3| 5|33 13
_z[dxx & %2 2*
3x-1
—311 I: 3‘\,___ —
N

5. Derivative of a Produet (The Product Rule)
If fand g are differentiable at x, then fg is.also differentiable at x and
[Ax)g(x)] =/ "(x)g() +f (x) g'(x), that is

d e d
EU(x)g(x)] = [ ‘.&Lf(x)]] g(x) +f (x)[ dx[g(x)]]

Proof: Let ¢(x)=f(x)g(x). Then
(i) ¢x+&)=Ff(x+8x)glx + &x) and
(i) Plx+8x) = $(x) =S (e + &) o6 + B) (%) 269)
Subtracting and adding f(x) g(x + 8x) in step (ii}), gives
lx + bx) — $x) = (x + &) gz + 8x) —f (x) glx + 8x) + F(x) glx + &x) — f{x)glx)
=[x+ &x) —f(x)] glx + &x) +f (x) [ gl + bx) —glx})]
) KISy L))

&x &x
Taking limit when &x — 0
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(iv) Lim #(x+ bx) ¢ (x)
Bix -0 o

o [ S8 £ gl +8) ()
~ i EHESD). g+ 1oy, S+

=£’i_tﬂf(x+ E;Z—f(x) - Lim g(x+ &)+ Lim f(x)- Lim g(x+ E;ci—g(x)
(Using limit theorem)

Thus ¢/ (x) = 7/(%) g(x) + £(2) £2) [Eﬂg(x+&’¢) =g<x)]

o 2 1) s= S L) 8+ ) Lot |

[P 10| Find derivative of = (2x +2)(x —/x) with respect to x.
y=(2J;+2){x—J;)

= 2(Vx + D(x—Jx)
Differentiating with respect to x, we get’

Q=2%[(JE +D)r=x)]

ax
—y i _d o . — _d —
=2 [ .. _(aJ.: +1) ](x Jx) +{Wx+)—(x Jx)}

=2 [lx%_1+ﬂ](x—JJ_c)+(JJ_c+l)x (1—%;:;“‘]]

\2

=z:;f;:(r-~5>+f~’?+“"[l‘ﬁ)]
o _ﬂﬂ«f; +1)[£H

| 2dx Jx
=T[x—-\.r+2x ~Jr+2x ]
3x-1

Jx
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6. Derivative of a Quotient (The Quotient Rule)

Iffand g are differentiable at x and g(x) # 0, for any xe D(g)then L is differentiable
b4

atx and (f(")j - S ()g(x)-f(x) g'(x)
[e(x)T*

g(x)
] [i Lf(x)] g(x)— f(x) [ﬁlz(x)l]

that is i[f (")] _
dx| g{x) [g(x)]*

Froof: Let g(x)= @ Then
£(x)

. _ Jf{x+dx)
(@) #(x+&x)——g ol and

- _ Se+tx)  f(x)  filx+Bx) g(x)— f(x) glx+8)
i i i g £(s) (e +82)
Subtracting and adding f{x) 2(x) in the numerator of step (ii), gives
S0 g () = T+ 8D EO) VB~ () g+ + £(3) £(x)
g(x) g(x+dx)

[CF (et 8x)— f(x))g(x)— f{x) (g(x+ bx)— g(x))]

1~
~ g(x) glr+&)
iy PE+ED—$G) 1 [f(x+ dx)— f(x)
ix g(x) glx+8x) fix
Taking limit when &x — 0

(iv) Lim #(x+8x) 4 (x)
dx >0 8

. I (fEEE—f) . . gEE)-g(2)
-,;“ﬂ[g(x) g(x+ax>[ & 2@y )]
Using limit theorems, we have

= SR s FW F@  (+ Linelesi)=g()

0910 504




i [f £)) j ) g F) g0

g(z) [g0)P
j ( - [%Lf(xl)]g{x) - fG) [E"(g(x))]
dx | g(¥) [e(=)F
[FTTTIMNNL| Differentiate M;ﬁ"'swiﬂzrespecttnx
Let $(x)= 2B oy

x+1
f(@)=2x"-3x*+5 mnd g(x)=x'+1

Now f'(x)=%[2x"—3x’+5]=2(3x’}—3(2x}+{_]=6x"’—6x

and g'(x):%[.r’+1]=2x+ﬂ=2.t _
Using the quotient formula ¢/ (x) =/ ) Ef;",("'"{]}‘) £G) we obtain
v
i[zﬁ-af+s]'_(6f—5x)(x=+1)—(2x=—3x’+5}(2x)
| P41 ¢ o+ 17
_ 62" —6x +6x" —Bx—(4x" - 62" +10x)
(x* +1)*
_ 6x* —6x" + 6" —6x—4x" + 62 —10x)
(F+1)?
=2.x"+6x’—16x
G +1)?

P EXERCISE 13.2

1. Differentiate w.r.t *x’.

0 x+27+5° (ii) 5425743 (i) 2*~3
2x+1
vy LVR-x) ¢ [J_ —lj (W) (x—5¥3-x)
Vx Jx




. (1) o X1 . 2x—1
(vii) -1 (viii) Z_3 (ix) o
a—x o X1
0 o 4

a2
. 3
3. Find % iy [-‘E*f-“* D (x=D)

x?—1

[#5

Differentiate Qe +31}{x2 1 with respect to x.

: L
x2—x?

l av
4. Wy=+y———, showthet 2, % . y - 2./5
vz a2 .

5. Ify=x*+2x*+2 prove that :%=4x";rp_1'-

13.7 Application of Differentiation

We will apply concept of d.lﬂ'm'entlauon to real-world problems such as (profits on
diminishing returns, environmental factors, financial investments, population growth,
spread of diseases, movement of particles, time-speed in tramsportation, structural
stress, material required that ig changes in construction).

Profits on Diminishing Retuyiia

A company's profit function is given by F(x) = 100x— 5x* ,where x is the
number of units prodiced. Determine the marginal profit when x = 8 umits.
EXITTT, The marginal profit is the derivative of the profit function with respect to x.

Px)= %a_ﬂqx—'if) =100-10x

Now, substitute x = &: P'(8)=100— 10(8) =20

So, the marginal profit is 20 when 8 units are produced (in the given currency).
Movemené of Particles

A particle moves along a line according to the position function
5() = 42 382 + 21, where s(f) is the position in metres and ¢ is the time in seconds. Find
the velovity and acceleration at f =2 seconds.

Ve]ocit}' is the derivative of the position function:

v(t)=%(4r"—3:’+2r)=12r’ ~&+2
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Substitute £ =2:
w2)=1202y -6(2)+2=48—12+2=38
So, the velocity at =2 iz 38 m/s.
Acceleration is the derivative of the velocity function:

a(:):%azf-mn:m-s

Substitute t =2
a(2)=24(2) - 6=48—6=42
8o, the acceleration at 2 = 2 is 42 m/s?.
Flnnnm:l Inveriments
A bank offers a compound interest rate on an investrnent, and the value
of the mwshnﬂntaﬂartyamm given by F(¢) = 5000(1+0.04t)". Find the rate of change
of the investment value after 10 years.
XTI, The mate of change of the investment is the derivative of ¥{z) with respect to £

V'(:)=%(sowa+o.m¢)’)=ﬂm(z)(l__gr-om;(o.my

V' (£)=400{1 + 0.04¢)
Substitute t = 10; X
¥'(10)= 400 {1+ 0.04 x 10)=400(1+ 0.40) = 400 x 1.4= 560
S0, the investment is growing at a rate of Re.560 per year after 10 years.
Stractural Stress .
LTI S| The stress on a beam under a varying load is modeled by S{x) = 500x — 22,
whare 5(x) is the stress in pascals (Pa) and x is the distance (in metres) from the beam’s
fixed end. Find the rate of change of siress at x = 5 metres.
TlJ: rate of change of stress is the derivative of 8{x) with respeci to x.

(8= (5005~ 26°) = 50067
Substitute ¥ = 5:
& (5)=>500—6(SY =500—6x 25=500—150=1350
So, the stress is increaging at a rate of 350 Pa per meire at x = 5 metres.

P EXERCISE 133 _d

1. A car’s position at time t is given by s(f) = 5£ — 3£ + (. Find the velocity by
differentiating the position function with respect to time.

2. Structural strees on a bridge is modeled by the function 5{x) = 100 — 5x%, where x
is the distance from the center of the bridge. Caleulate the rate of change of stress
at that point.




A company's revenne function is given by R (x) = 1000x —10x%, where is the
number of units produced. The cost fanction is C{x) = 300k + 2000.

(i) Find the profit fimction P(x)

(i) Determine the marginal profit when x =15

An investment grows according to the function A() = 10000(1 + 0.057)°, where
A7) is the value of the investment and 7 is the time in years.

(i) Find the rate of change of the investment after 8 years.

(ii) What is the investment value after 8 years?

The position of a particle moving along a line ig given by s(t) 5':1 127+ 8¢,
where 5(7} is the position in meters and f is the umemseconds

(i) Determine the velocity of the particle at r=4 mmde

(ii) Find the acceleration at { =4 seconds

(iii) When is the particle at rest?

The pusﬂ:mn of a car traveling along a straight hJ,EEm}y is given by

x(f) =30t 2— 47, where x (1) is the dmlanc.etml:qléghlu]omm and ¢ is the time
in hours. /(\ \,

(i Fmdthﬂcafsvﬁmtyﬂ:=3w

(i) Determine the car’s acceleration g: ’3 hours

The atress on a beam under s vm'yﬁ% hh% is given by $(x) = 400x —x°, where S(x)
i8 the stress in pascals (Pa) and'sx is the distance from the fixed end in metres.
Calculate the rate of change of'stress at 6 meters.

The cost C{r) io commJei:\a. ¢ylindrical tank depends on the radius of the base,

and ig given by C(rej\(ﬁt)(}m’ lSU{rﬂD

of the base md&mundte:mrepresenlsﬂmcmtnfﬂm walls. Determine the
thEOthﬂng}fthﬂCﬁﬁtﬂtr“lM&&

NN




Vectors in Space

In this unit, we will look into the rectangular coordinate system in three-dimensional
space and explore the fundamental mathematical operations involving vectors in space.
We will begin by undersianding the dot product (or scalar product) and the ¢ross product
(or vector product) of two vectors and learn about their geometric interpretation. Further,
we emphagize their practical applications, For example, we will s¢e how these concepts
can be used to calculate the area of a triangle and the area of a parallelogram. Finally, we
will explore the extensive use of vectors in three-dimensional space, particularly in
physica, where they play an important role in determining forees, velocities, and other
egsential physical quantities. For example, determining the work done by 2 constant force
when moving an object along a specified vector.

14.1 Vectors (Recall)

In previous classes, we leamed about two fundamental quantities: acelars and vectors.
A scalar is a quantity that has only magnitude or gize, such as mass, time, density,
temperature, length, volume, speed, work ete. On the other hand, a vector is a quantity
that has both magnitude -end direction, for example displacement, velocity,
acceleration, weight, force, momentum, electric and magnetic ficlds, etc.
Geometrically, awector is represented as a directed line segment Ewithdasitsinitia‘l
point and B 2 the terminal point.

In two-dimension (R?) & vector has components that can be represented by an ordered pair
[x, ¥] of real mumbers. For the vector 4 = [x, ¥], x and y represent the components of 4,
Addition of Vectors: For any two vectors g = [x,, ¥;] and ¥ = [x,, 3;], we have

u+y= o, ]+ Pl =k 00t
Sealar Multiplication of & Vector: For u =[x, y] and g€ R, we have
au=d[z, y] < ax, ]
Equal Vectors: Two vectors =[x, 3] and v=[x,, ,]of R*are said to be equal
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if and only if they have the same components, That is,
[% #]=[%, 5] if and only if x,=x, and y =y, and

we write u =y

In other words, two vectors i and vy are said to be equal, if

they have same magnitude and same direction,
Parallel Vectors: Twovectursareparaﬂellfandonlyiftheymmmwalar
multiple of each other.

—r — 3 —e
For example, vectors AR, = AB and 5 AB are parallel.

Magnitude of 8 Vector
The magnitude (or norm or length) of a vector in 2D
represents the length of the vector from the origin to the'

L

point represented by the vector. For any vector u=[x.y] 7T
in R*, we define the magnitude, a5 the distance of the

' . v PR
point P(x, y)from the origin O, £
. ¥
Magnitude of OP =|OP| = |uj={2 + »* "
x x

Now, we will learsmn some mathematical operations
involving vectors in three- dimensional space.

14.1.1 Rectangular Coordinate System in Space
In space a rectangular coordinate system is constructed
using three mutually orthogonal (perpendicular) axes,
which have aorigin as their common point of
intersection. When sketching figures, we follow the
convention that the positive x-axis peints towards the
reader, the positive y-axis to the right and the positive
z-8xis points upwards,

These axes are also labeled in accordance with the right-
hand rule. The fingers of the right hand, pointing in the direction
of the positive x-axis, curled images toward the positive y-axis,
and the thumb will point in the direction of the positive z-axis.
A point P in space has three coordinates, one along x-axis
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directed distances along r-axis, y-axis and z-axis z Pi-;- b,c)
respectively are 4, b and ¢, then the point P is written with a i
unique triple of real numbers as P (g, &, ¢) (sce figure). :
14.1.2 Concept of a Vector in Space 5 —%
The set B® = {(x, , z): x, ¥, z € R} is called 3-dimensional / 2
space. An element (x, v, z) of > represents a point P(x, y, z), #

which is umiquely determined by its coordinates x, y z Px,v.2)
and z. Giwnavecturginspace,theree_m;sts 8 unique point
Pz, y, z) in space such that the vector OF is equal to u (see
figure). Now each element (x, y, z) € R® is associated with a
umquaorderedtnple (x, ¥, z), which represents the vector
u= OPF = [x,7.2].

14.1.3 Fundamental Mathematical Operations for Vectors in Space

We defing addition and scalar multiplication in R by:

(i) Addition of Vectors: Fnranytwuvectnmu'= [x, », 2] and v = [x’, 3", £'] we have

(ii) Scalar Multiplication of a Vector; For g =[x, y, z] and a € R, we have
au=alx, y, 2] = [ax, ay, @z]

The set of all ordered triples [, y, 2] of real numbers, together with the rules of addition

and scalar multiplication is called the set of vectors in &°. For the vector

% =[x, », z], %, y and z arc called the components of . The definition of vectors in B*

states that vector addition and scalar multiplication are to be carried out also for vectors

in space just as for vectors in the plane. Similarly, we define in &7

{a) The negative of the vector u =[x, y, z] as —¢ =(-1)u = —x,— y,— 2]

(b) The difference of two vectors v =[x’ ¥, 2] and w = [x", ", 2z"] as

v—w=v+(-W =¥ -a",y - .2 2"

(v) The zero veetor as 0= [0, 0, 0]

(d) Equality of two vectors: Two vectors y=[x! y', 2] and w = [x", ¥", 2] arc equal
that is v = w if and only if x’=x", y'=y" and z"'=z".

(e) Position Vector
For any point P (x, , 2) in K", a vector 4= [, y, 2] is represented by a directed line
gagment OP, whose initial point is at origin. Such vectors are called position
vectors in &2

i

1'-'- -




14.1.4 Magnitude of a Vector in Space
We define the magnitude, norm, or length of a veetor u = [x, y, z] in space by the distance
of the point P(x, y, z) from the origin O. z HI-J?-Z)
OB =l =5 +y* + 2 :
LTI 1] For the vectors, &= [1,-2, 3], y=[2, 1, 3] and
w=[-1, 4, 0], find the following:
i vt+w (i) 2w {ii1) [u]
(iv) [v-—2w] (v) P2n—¥+3w|
(i) p+rw=[2-1,1+4,3+0]=[1,5,3]
ﬁi) 2! = 2[_ 1: 4: ﬂ] = [_2: B: 0]
@) u/=[L-23] =P+ 27+ =1+4+9 =414
(iv) lv—2w=([2+2,1-8,3-0]=][4,-7, 3]
= J@+( D+ = fle+ 9 +9 =74
) [2u-v+3w=2[1,-2,3]-[2,1,3]+ 3 -1,4,0] = |[2—4,6][21,3]+[-3,12,0]
=[-3,7,3] = (3 +(TP +BF =o+49+9 =67
14.1.5 Components of a Vector,
As in plane, we intreduce three special vectorsi=[1, 0, 0], z
i= [0, 1,0] and k=[0,0, llmﬂa

As magnitude of § = ¥ + 0* + 0 =1

magnitade of f = /0 + I* + 0> =1 and

magnifude of k= JO+0+1*=1.80,i, j
amd § are called unit vectors slong x-axis, y-axis and z-axis respectively. Uging the
definition of addition and scalar multiplication, the vector [x, y, z] can be written as:

u=[x, y, z]=[x, 0, 0] + [0, y, 0]+[0, 0, z]
=1, 0, 0]+ [0, 1, 0] + 20, 0, =i + yj + zk
Thus, each vector [x, y, Z] in R? can be uniquely represented by xi + yf + zk.
Unidt Veetor
A mnit vector is defined as a vector whose magnitude 18 unity. In three-dimensional

space the unit vector of the vector w = xi+ yi+z&iswrittenas; (read as u hat) and
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y z
.Jar’+y’+5z2 Jx’+y +z’j Jx’+y’+z’_
Intarmsoflmitvectorg,_bandbthasumg+zoftwuvectors
g=[xl,yl,zl] and 1v=[x,,y2,zz]iswﬁttcnas:

E+!=[II+I;,JF1+}’=,21+ZZ]

=[x +x)i+( +J"z)i+(zl+zz)£

[T 132 | Find the unit vector of u=2i+ 5 —%.
[ZITTTITY, Given vector u =2{+ 57—k, to find the unit vector

= |u=J@+E+ (1) =30

The unit vector is:
a it 2!+5j_£ 1. " i .
U . z - 2i+5j—k
u Jsu Bov L

Thus, # = —— (2:+5_J.T k)lsﬂmmqmmdumtvactnr

Ifg=2£+3£+§, g—4§_+ﬁ-_.1__+2i_c and w=—6i—9j—3&, then show thal
u,v and ware parallel to each other,
v = 4146+ 2k =2(2+3)+E)

Sor=2 _
=> wuand v are parallel vectors.

w=—6{—97-3k
=<3(2+3j+k) .. w=-3u

= y and ware parallel vectors,
Hence u,vand w are parallel to each other.

14.1.6 Properties of Vectors
Let u, v and w be vectors in the plane or in space and let a, b € R, then they have the

following properties:

(i) uty=v+u (Commutative property)
(i) E+rN+w=p+@E+w (Associative property)

(i) u+o=u (Additive Identity)

(iv) ut+t(-lu=u- (Inverse for vector addition)
(v) alytwl= a£+ Gﬂ (Distributive property)

(V)  a(bu) = (abu (Scalar multiplication)
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Proof: (i) Since for any two real mmbers e, b €R, a + 5=5 + a, it follows that for
any two vectors u = [x, v, z] and v = [/, ¥/, 2] in R*, where components of wand v
belong to .

We have uty =[xy zh[x, ), 2]

=[x+x,y+¥,2+Z]
=[x'+x)y+yz+z] = a+h=b+ag
=[x, 21+x» 2]
=v-+u

So, addition of vectors in R iz commutative.

(i1) Sincefnranythreereulmnnbma,b,c&R,(a+b)+c=arb{ﬁ+c),itfulluws
that for any three vectors, ¥ =[x, y, z], v = [x, , 7] Md-"_"’.:: [x".}'":z"]iﬂﬂs-
Where components of #, ¥ and w belong to R '

We have Rty +w=[x+x,y+y,z+27+[x" " 2"

=[{x+x)+a", (p +y) tye + 2y + 2]
=+ +xNy+ ), 2+ (7 +27)
[a+h_}+c=a+(b+c‘)
=[xlyl z]+[x'7_1*x",-y'+y",z'+z”]
=u+(p+w)
So, addition of vectors.in R? iz associstive,
(iii) Since for any real mmber gand 0
a+ 0= ga, it follows that
for any vectors, g = [x, y, z], and o = [0, 0, 0], where g is the zero vector in R%.
We have g+'g=[x v z]+[0,0,0]
=x+0,p+0,z+0]
=[x »zl=u
\ uto=u
Thus, p is the'additive identity in R
(iv) Since for any real mumber g, there exist —a such that
a+(—g)=a—-a=0 , it follows that
for any vector, =[x, y, z], there exists - = [-x, —y, —z] in #*
Such that ut )= pzl+ -y =x+=),y+ 2+ (=Z)]
=lx-xy-yz-z]
= [0, 0, 0] = g, where g is the additive identity
ut(u)=o
Thus — is the additive inverse of g in R?
The proofs of the other parts are left as an exercize for the students.
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14.1.7 Distance Between Two Polnts in Space
If Eé‘mﬁé are the position vectors of the

ints P s M5 and 7, s Va2
po 1(11_J'Lzl) (%2 y02 ) Py, 7)
The vector A F, is given by

—_— — —p

BE= OB - OR{% - %5~ 315~ 4]

—_—

Distance between B and F, = |BB)|

=@y +{(n-») +(n-a) <O
This is called distance formula between two points £ and B in B,
Suppose 8 butterfly's flight path pessed through points (2, 4, 7) and
(6, 1 ,3), where each unit represents a metre. What is the magnitude of the displacement
the butterfly experienced in traveling between these two points?

EXTITIENT, Distance between two points in three-dimensionsl space is given by the
formula

d=f%-x) +(n-3) #(z~=7)

Substitute the coordinates of the given points info the formmla:
d=qf(6-2) +(1-4) +(3-7)
d=J16+9+16=/41 = 6.40

The magnitude of the displacement the butterfly experienced in traveling between
these two points is approximately 6.40 metres.

14.1.B Dirgefion Angles and Direction Cosines of a Vector
Let 5=al':'=xj+yi+z§ be a non-zero vector, let @, fand y

denotz the angles formed between r and the unit coordinate
vectors i, jand k respectively,

where O0<a<m, Dsf<mand 0<y=smw
) The angles a, § and y are called the direction
angles of the vector 7.

(ii) The numbers cos a, cos § and cos y are called direction cosings of the
vector r.
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Important Revuolt:
Prove that cos® @ +cos” f+cos’ y =1
Proef: Let

£=[I,J’,Z]=I§'+J"i+2£

|;|=1.,f;|c’+y‘+z2 =r

ﬂlmﬁ [: ': :]mthﬂumtwctmmihsdmchnnufﬂmvmtorr oP

It can be visualized that the triangle OAP is a right
triangle with m 24 =50P.
Therefore, in right h:ianglc OAP,

T2

A

The numbers cosa =— ,maﬂ yandms;r__i ar¢ called the direction cosines
nfOP

cos’ @ +c08’ froos’ =T b b =L % =T o
Fo

P_EXERCISE 14.1 4

1. Letu=3i+2j- 5#‘ IJ—; 5j—kandw=—4i~ j+ 7k, Find the following:
() u+dviw (i) v-3w (iil) P+ w.
2. Find tjr_ennﬁ.guihuleuflhuveulmgand write the direction cosines of v.
{f) w=3-2j+6k (i) v=—4di+4j+2k (il) v=—6i+8j
3. Find,so that [2i+(t—1)/+tk|=+13
4. Find 8 unit vector in the direction of y=—1+4/-8k
If =2+ {—3k, v=—i+4j+2k and w=3i{-2j+k, Find 8 unit vector pareliel
to du—3v-+2Zw.
6. TFind a vector whose
(i) magnitude is 5 and is parallel to 3i+4j-k
{il) magnitude is 7 and is parallel to —i+ j+£.
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If w=xi+2j+3k, v=i+yj—3kand w=-21—3] represent the sides of &
triangle. Find the values of x and y.

8. The position vectors of the points 4, 8, Cand Dare u =i+2j+k, v=Ti+Bj+4k,

10.

12,

w=—i+k and z=i+2j+2k respectively. Show fhat AB is parallel toai

We say that two vectors v and w in space are parallel if there is a scalar ¢ such
that v = cw.The vectors poinl in the same direction if ¢ > Oand LI]B vectors point
in the opposile direction if e < 0 '

(a) Find twa vectors of length 2 paralle] to the vector v = 2i—4;+4k

(b) Find the constant a so that the vectors v=i— £+t_1-§.;t_n& w=ai+9j—12k
are parallel.

(c) Fmdavmtoroflengthiinthedimctonoppasitﬂhntufv—l—z_;+3k

(d) Find a and b so that the vectors 3i— _.i_:l—i_}andaﬁbi 2k are parallel.

A spacecraft moves from point (120, 240, 350} to point (130, 210, 80) in
kilometres, What is the magnitude of the displacement vector in kilometres?

. Find the direction cosines for thctg-i"ven vecton:

(i) u=—6:‘+3j+2k () v=4+2j-5k

(i) Pﬂ.v-th(zs.ls) arid (11,6, 19).
Which of the fullovﬂhg triple can be the dircotion angles of a single vectar?
i 45° 45°, 60° (ii) 30°,45°, 60° (iii) 45°,60°, 60°

Product of ectors: Multiplication of two vectors is an important algehraic
operation i algebra. This algebraic operation plays a fundamental role for
understanding various physical and mathematical real-life situation. Unlike the
multiplication of numbers, product of vector can be performed in two distinet ways.
The two primery types of vector multiplication are the dot product and the cross
produet. The dot product is a scalar number while cross product is a vector quantity.

14.2 Dot or Scalar Product

14.2.1 Dot or Scalar Product of Two Vectors and Its Gesmetrical Interpretation
We shall now consider products of two vectors that originated in the study of physics
and engineering, The concept of angle between two vectors is expressed in terms of &
scalar product of two vectors,




Diefinition 1: Let two non-zero vectors g and v, in the plane or in space, have same
initial point, The det product of 4 and v, writien as - v, is defined by
u-v=|ul|y cost

B
M
6 0 s 5 B &
= ¥ r ¥ - b ¥ ¥ :

Where 0 in the angle between wand vand 0 <0 <x
Definition 2:
(8) If u=ai+hjand 1_r=a,i+bzimtwonon-mvectorﬂnthepl'anc. The dot

product u- vis defined by:

u-y=aa, +bb,
(t) fu=ai+hj+ek and v=a,i+b, J+c,kdre two non-zero vectors in space.
The dot product u- vis defined by '
- v=aa,thib, +c6
22 The dot produst is also reforred s the sealar produst or the inner product.
Prove the equivalence of above two definitions of dot product of two
vectors:

(@) Iy =[x,y ] mndw=[x), y,] arc two vectors in the plang, then v w=x,x, +, ¥,
(i) Ifyand w are two non-zero vectors in the plane, then v- w=|¥ | lw| cos &, where
f is the angle between vy and wand 0 < < w.,
Proof: Lctg-aﬁdﬂbethe sides of a triangle then the
third side opposite to the angle 8, has length |y —w|

By law of cosines,

»

|¥—wf =¥+ w?—2|¢|hwl cos & (1) ¥
if ¥ =[x, y]andw=[x,y,], then The Law of cosine:
Y-w =y -, ¥~ 5l ESaindSikotn

So, equation (1) becomes:

(m—mY+ (0 —pY=x+y+5+y;-2|v||w|cos 8
—2xx, — 2y, y,=2|¥||w|cos @
=  xxtyyv=|v||w|cosb=v-w
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14.2.2 Deduction of the Important Results
By applying the definition of dot product to unit vectors i, j and &, we have
@ ii=l fcos0°=1
J-3=|}|s|coste=1
k. k= |k||k|costP=1
®)  1j=i]J]cos90°=0
J-k=|||k|cos90°=0
k.= [k [f|cos 96" =0

14.2.3 Projection of a Vector along Another ¥éclor

In many physical applications, it is required to know “how nuch” of a vector is applied
along s given direction. For this purpose, we find the projection of one vector along
the other vector. .

Let 0=y and OB =v

Let € be the angle between them, such that 0 <0 <=.
Draw BM L QA.Then OM is called the projection of
v along u.

Fromthsﬁgmﬂ: g=m9. thatis.

OB
OM =|OB|cos 0 =|v|cos® (1)
Now, #(v=|u||v|cosd =ul(|v|cosd) =|x|(OM)

. = {magnitude of ¥). (projection of v along u)
Thus, geometrically, the dot product of two vectors represents the product of the
magnitude of one vector and the projection of the other vector onto it. In other words,
the dot product of two vectors shows how much one vector extends in the direction of
another.

¥ o PEEEEE -
R

Now, by definition,  cos# = (2)

From (1) and (2), OM = |y |-




Similarly, projection of g alongy ===

14.2.4 Properties of Dot Product
Let u, v and w be vectors and let ¢ be any real number, then
@ uwv=0=2>u=0orv=0oruly

@ Y=Yy (Commustative property)
(i) w.(+w)=w.v+u.w  (Distributive property)
() (cu)v=c(u.y) (c is scalar)

®  wau=

14.2.5 Dot Product of Vectors in terms of thefr components
Letu=ai+bj+ ckandv=a,i+b,j + ¢,k be twonon-zero vectors.
From distributive law we can write:
u-v= (@i+h j+ek) (ai+h j+c,k)
=aa (- D+abli- Nrac,- B b G- D+bb(i - D+be,(- 8
+ @ (k- D+aby(k- D+eck - &)
= wv=a@m+hbh +tae voiri=je =k k=1
i-j=j-k =k-i =0

Hence the dot product of two vectors is the sum of the produet of their corresponding
components. _
(BT 6 Showthat the components of a vector are the projections of that vector
along i, j and Erespectively.
Proof: Letv=ai+5j+ ck,then

Projection of v along ¢ =

|-
1

=(@i+b)+ck) i=a

| =
e

Projection of v along j = =(ai+bj+ck) j=b

o ‘|

|

| &
Hence components a, & and ¢ of vector g=a£+bi+c§ are projections of vector v

slong i, j and k respectively.

Projection of v along k= ={ai+bj+ck)-k=¢

L
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Prove that in any trisngle ABC

(i) a=b+c*2becos A {Cosine Law)

(ii) a=bcos C+ccog B (Projection Law)
Proaf: Let the vectom a, b and ¢ be along the sides BC, C4 and AB of the triangle
ABC as shown in the figure.

) atbte=0

= a=-(k+t9
Now g-a={(b+c)-(&+o)
= =b-bt+h-gteg bte-g

= @=P+2-c+Z (v bc=c'b
= &=+ +2bccos(a—A)
ad=F+c—2bccas 4
(i) a+bte=0
= =f—0
Taksdotpmductmfhg
g-a=-a-b-g-¢
=—gb cos{x — C) —ac cos(r — 5)
=—ab{—cos C)— ac(—cos B)
2* =abecos C+accos B
= a=beos C+ccos B
vaeihnt c08 (a—f) = c08 & 008 f + sin 4 sin 4
Proof: LatOAnndOBbeﬂlemtvectnrsmthe 3
xy —plane making angles @ and § with the positive x-axis. 4 4
So that mAAOB=a £
Nowa=msai+aimi B
and OB =cos fi + sin fj a8

—r —P

OA - OB = (cos ai+sine j)- (cos Si+sin 8 )
= |0A4||OB|cos(e—f) =cos a cos § + sing s § N
oos(a — B) = cos & cos f+sine sin 8 (- |CA|=|0B|=1

v
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14.2.6 Orthogonality of Two Vectors

Definition: Two non-zero vectors y and v are orthogonal (perpendicular) if and enly if
u-v=0.

The dot product of two vectors u and v becomes [N
The zero vector o is orthogonal to
zero when gJ.y,ﬂ=90“or%mdius. every vectnr because;

g b=0V3

= |u|L|»| cos 50°=0
Thus, - y=0 <> u lv
BT e If u=3i— j—2k and v=i+2j—£, then find u-v.
u v = (@K + D) +(2)1) =3 '
If u=2i—4;+5k and v=4i-37-4k, thmprmthat wand v sre
nrﬂmgonn]
= (2)04) +{(—4)(=3) + (5 =0

= uandvarepm‘pandmu]ar
{11 Find a scalar @ so matthethers 2i+aj+ 5k and 3i+j+ akare

orthogonal.
S UOTOT, Let wu=2i+a j+5k and v=3i4+ j+ek
1t is given that u anﬂ'z'are orthogonal
wv

= Z+ai+3K) .3+ j+ak)=0
= _ 6+o+5x=0
a=-1
14.2.7 Angle Between Two Vectors
The angle between two vectors u and vis determined from the definition of dot product,
that is

(a) u.v=|u||v|cos 6, where 0<0<x
= cosf=—2%
||| v]

) FHu=aithjtgk and v=git+hjt+ck, then
uv=aa,+bh+ec,
lu|=\f@+8+& and |v|=JE+E+E




4, + by +og
NG +B -+ |} +B}+c]
IFTTTIM12| Find the angle between the vectors.
u=2—j+k and p=-—i+]
SOV wov={(2— J+k)(+ j+ 0k)
=(2)(-1)+ (-1X1) + (1{0)=-3
and  |u|=|2-j+k| = QP+ =6
|vl=| =i+ j+0k| = Y + @ + (0 =2

cosB=

Now cosf= E¥
[ |3

s comB=——>
V62

__B

2

B=E

[

—

[BTTTII13| Show that the vectors AB = 2/ — / + k, BC=i — 3j — 5k
AC=3i — 4 - 4k are the'sides of a right triangle.
TN, Given 4B =20 — j + k, BC=i-3 - 5k and
AC =3 4 — 4k
— — -
Now  AB+BC= (2i-j+k)+(-3j-5B)
= 3i—4j— 4k=AC (third side)

—_— — —_—

AB, BC and AC form a triangle ABC.
Further we prove that A4BC is a right triangle

— —

AB-BC= (Zi-j+b)-(i-3j-5%

=2X1D) +(-I}-3) +H{(1)(5)=2+3-5=0
.. ABLBC
Hence, AABC is a right triangle.
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14.2.8 Work Done By a Constant

Force

If a constant force F, applied to a body, acts
at an angle 8 to the direction of motion,
then the work done by I is defined to be the

product of the component of F in the
direction of the displacement and the
distance that the body moves.
In figure, a constant force F acting on a
body, displaces it from 4 to 3.
Work dong = (uumponantofFalongAB](dmﬂlnncmﬂm)
=(FcosO)AB)=F-AB=F d
S 014 The comstant forces 2i + 5+ 6k ami —i — 2_; kact on a body
displaced from position P(4, -3, -2) to 06, 1, —3_);.;__]?;;;& the total work done,
Total force = (20 + 57 + 6B)+ (<i ~ 2 - )
= F=i+3j+5k :
The displacement of the body = PO = (6~ )i + (1+3)) + (-3+2)k
= d=2i+4jck
Work done =F- d. -
—(;+3_;+5_) (2 +4j - kE)=2+12—5 =" units

A\ EXERCISE 14.2

1. Find the cosfues of the angle # between uand

() w=2+3j+k v=—i+2j+2k (@) wu=[-32 5], v=[1,6,-2]

If a+b+c=0 and |a|=3, |b|=5 and |¢|=7. Find the angle between & and b.
If |a|=3, |f|=4 and |a+5 =5. Find the angle between 2 and b.

Calculate the projection of g along b and projection of b along g when:
() a=2+3j-k b=i-2j+4k (i) a=4i-2j+3k b=i+j+k

5. Find a real number a so thet the vectors % and v are perpendicular:

b2

o

() u=@itdj+k, v=i-2j+tak () w=@i+2aj-k v=itaj+3k
6. Find the number z so that the triangle with vertices A(3, 0, —2),8(0,3,1)and
C(1, 1, z)ins a right triangle with right angle at C.
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7. If & and bare it vectors and 26 is the angle between them, show that

ng=_
2

If |@+5| =|a—&]|, then show that @ and bare perpendicular.
9. (i) Show thatthe vectors 3i—2/+k, {-3j+5k and 2i+ j—4& form a right

Ei—b‘.

triangle.
(ii) Show that the set of points P(4,—1, 2),0(1,3,—1)and R(-2, 4, 6)form a
right trigngle. ‘;\.{:,
10. Prove that the cos{e + #) = cosa cosf —sing sin § C}f
11. Prove that in any triangle ABC. D
(i) b=ccosd +acosC (i) c=acosH +ﬁeba\3

(i) B =c* +a*—2cacosB (V) & =d +B = JabeosC

12, Show that for any vectors @ and b, ||a|- |b{j§@+lj\£|g\+|l_?\

13. Find the work done, if the point at whichhelconstant force F=2i+5/+3kis
epplied to an object, moves it from P({:S, I} to B(7,5, 3).

14. A particle, acted by constant gides/F, =3i+4j-3kand F=i+4j—k, is
displaced from  A(2,1, 3)ma£$,44) Find the work done.

15, Aparhclcmdlsplncedﬁ'mﬂ:epmnt A(5,—5,—7) to the point B(6,2,—2) under
the action of conswetf:hn:ea defined by 10i— j+11k, 4i+57+9k and
~2i+ j—9k . Sh @uthetomlwultdunehyﬂ:efbmemmme

16, afomofma@mdeamuacungpmne]m 4i+3 j—kdisplace the point of
applicati A(2,—1,3) to B(7,3,2). Find the work done.

14.3 Crsss Product or Vector Product
143.1 The Cross Product or Vector Product of Two Vectors and iis

Geomeirical Interpretation
One of the key multiplication operations involving vectors in space is the cross product,
Unlike the dot product, which results ig a scalar, the cross product of two vectors yields
a vector quantity. The vector product of two vectors is widely used in Physics,
particularly in fields of mechanice and electricity. It is only defined for vectors in space.
Let 4 and ¥ be two non-zero vectors, The cross or vector product of u and y gives a
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vectarﬂntlspm'pmdmulnrtnhuththcvectuﬁuandv written a8 g X v, is defined by
uxy=(ul|¢|sind)n

where 0 iz the angle between the vectors, such that 0 < 8 <« and nis a unit vector

perpendicular to the plane of ¥ and v with direction given by the right-hand rule.

H*Y

Figure (n) Figure (b)
Right hand rule

4] If the fingers of the right hand point along the vector 4 and then curl towards
the vector v, then the thumb will give the ditection of n whichis u x v. It is
ghown in the figure (a).
(ii) ]nﬁgure{b),thﬂnghthandnﬂnhnwsthsdmchunofvxu
14.3.2 Parallel Vectors
If u and y are parallel vectors, then (8:=0 =>sin 0 =0).

ux =0 e O ux =0
And if ux v=0,thengithersin8=0 or |u|=0 o |[¥|=

(i) Ifsiné=0 = 0=(P or 180°. Which shows that the vectors » and v are parallel.
(i) Ifg=0orp=0 then since the zero vector has no specific direction, we adopt the
canvention that the zero vector is parallel to every vector.

Ztlx\%wmisbuthpuﬂlulnﬂpmdimhrmmwm Thiz apparcot
contradiction will cause no troubls, since the angls between two vectors is never applied
when one of them is zero vector.

14.3.3 Derivation of Usefil Resnits of Cross Producis
By spplying the definition of cross product to unit vectors
i, j and k, we have:
(@) ixji=|i||i|sin0°n=0
Fixj=1jll7lsin0°n =0
4]

kxk = |k||k|sin®°z =
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@) ixj=|i||j|sin9Ck=k [ALLY The cmss product of )
Jxk=|J||k|sin9°i=¢ |bJmdE wowmitm
kxi=|k||i|sin90° j=j [T e ¥ P f/\i
= = | The given figore ia } ’
() wuxu=|u||ulsin0n=0 Epﬁ’“’_‘mm N
14.3.4 Properties of Cross Product '
The cross product possesses the following propetties:

(i) uxy=0ilu=0o0r v=0 (i) uxv=—vxu
(i) ux (v+tw)=uxy+uxw (v) ux (B)=(kw)xy=Kuxv)
(v) uxu=0 :

The proofs of these properties are loft as an cxercise for the students,
14.3.5 Analytical Expressions of g % y (Determifiant formula for & x v)
Let u=ai+h j+ok and g=a,§+bzi‘+c=__.g,'ﬂ1m
ux v={(ai+hj+ck)x (mi+hj+e,k)
= g, (X D+adix f)+ae,ixk) (by distributive property)
+ BaUxD+obU x D+hoxB) | ix i—k=—jxi,
+ e kxD+eoh & x f)rac(kxk) | ixk=i=

= abk—ac j< Bak + boitaa ) — bl
= uxv={(be, —eh Yi—(ac, - qa;)j + (b, — b))k @)

The expression of 3 % 3 determinant
i ok
=g b o= —ab)i—(ac, —ca)j +(ah, —ba)k
a B o

The terms on R.H.S of equation (i} ate the same as the terms in the expansion of the
above determinant.

i j ok
Hence uxv=|a, 4 ¢ (i}
a4 b o

which ig known ag determinant formula for u x v,




i —
The expression on B_H.S. of equation (if) is not an actual determinant, since its eniries ars

not all scalars. It is zimply & way of remembering the complicated expression on BLHS of
equation (i},

ine 315  Find a vector perpendicular to each of the vectors. Also verify that g
andbare L toaxb
a=24—-j+k and b=4i+2j-k

&vectnrpearpendiculartoho&thevectnmgandéiﬂgxg.
j k

i
axh = 2 -1 1|=—i+6j+8k
4 2 -1
Verification: %
ag-axb=(A—j+ &) H+6j +88)y= Q1) +)6)+(X8) =0
and &ax b=(H+2j —k)- (H+6] +8k) = (1) +(2¥6)+(-1X8) =0
Hence g % b is perpendicular to both the vectors' g and b.
14.3.6 Angle Between Two Vectors(Cross Product)
The sing of the angle between two vectors g and b is determined from the definition of
cross product.
If § is the sine of the angle between @ and b, then |ax b| =|a|| | sind
mﬁ=|§x§|
|al | B}
(ST00016| If g =di+3) +k and b= 2i— j +2k. Find a unit vector perpendicular
mboﬂlgmdg.Alspﬁﬁdthesineoftheanglehetwmthevmmgandg.
i j ok
ETT, . axb=44 3 1=7i-6j-10k
2 =1 2

and  |ax B = (D +(-6)* +(-10)’ =185
axd Ti-bj-10k

A umit vector perpendicular to aand b= = =
axy i

=

Now |a|=+J(4 +(GP +(1)® =26
B = @ + (D +(2) =3
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If 8 is the angle between g and b, then |a x b =| a|| 5| sin®

& sngoloxtl_ I8
lall8] W36

Prove that sin (z + §) = sin @ cos § + cos a sin §
Proof: Let OA and OB be two wnit vectors in the xy-plane making angles & and 8
with the positive x-axis respectively.

So that m2AOB = a+

Now 0.4 cos @i+ sine j
and GB cos (—@)i+sin(-£)j
_, =o0s fi~sin §] 4t
O.BxOA {cos Bi— mﬁj)x(msai+s1m§) 4
i J K
—_— — =3,
ety |OB||OA4|sin{fe+ )k =|cos 8 —cin B O P " -
cosg _sing O \fl\‘

= gin(e+ Bk =(sine cos f+cos & sin ik B
sin{fa + f) =sina cos f+cos.o sin
In any trisngle ABC, prove that

= ,=-_" =% (Law of Sines)
sind" snB sinC
Proof:  Suppose vectors g, b and ¢ are along the sides BC, CA and AB respectively
of the triangle ABC.
a+btc=0
= N\ bte=—a @
Take cross product with ¢
bxectexe=—axe
bxe=cxa (. cxc=0)
=  |bxe|=|exa]
|5| || sin{z — 4)=| ¢||a| sin{z — B)
= begsindA=casmB = bsnd=gging
.24 )

sinB sin 4
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Similarly, by taking cross product of (i) with b, we have
a c

= (i)

gind gnC
oo (8 wed Gl e g 2 e B
gpind ginB gnC

Ifu=2—j+k and v=4i+2 j—k, find by determinant formmula

(D uxu (i) uxy (i) vxu
¥=2-j+k and p=4i+2j-k
By determinant formula
i J k
() uxu=2 -1 1|=0 (- Two rows are same)
2 -1 1
i J &k
() wxy=2 -1 1|=(1-2}i~(2-9)j+(@+Hk=—i+6j+8k
4 2 -1
i J &
(i) wxuw=4 2 -1=(2-1)i-(4+2)j+(4-4k=i-6)j-8k
2 -1

143.7 Real World Applications on Cross or Vector Product
(a) Area of Parallelogram
Suppose u and v are two non-zero vectors
and # is the angle between them, and
suppose that |u|and |v| represent the length
of the adjacent sides of a parallelogram, (see
figure). We know that:
Ares of parallelogram = Base * Height
~ (Base) ()= [u{sind

. Area of parallelogram = |gxy\




(b) Avwen of Triangle
From figure it is clear that

Area of triangle = % (Ares of parallelogram) i

Area of triangle = %\gxﬂ ]

where u and v are vectors along two adjacent sides of the friangle.

Find erea of the parallelogram whose vertices are
F0,0,0), g(-1,2,4), R(Z -1, 4) and (1, 1, 8).

Amu of paraﬂalogram LPQ x PR|

Where LPQl and |PR| are two adjacent sides of the parallelogram

PQ DQ OP= (~1-0%+(2-0)f +{(A-0=— +2]+4k
PR=m—0P=(2-u};+(-1—n)i+(4-n)¢=2;-i+4,g

i j ok

Now POxPR=-1 2 4=@8+4)i-(4-8)j+(1-4k
2 -1 4
—12¢+12j-3k

—_— —
+ Area of parallclogram = |PQ x PR)= |12i+12, —3k|

= /144 + 144 + 9 = /297 square units
501101971 Find the arca of the triangle with vertices A(1L,—1,1), B(2, 1, —yand
C(—1,1,2). Also find a umit vector perpendicular to the plane of triangle ABC.
AB =0B—0A =2~ )i+ (1 +1)] + (1 - k=i +2j-2k
AC=0C—0A=(1-Di+(1+1)j +@- Dk=—24+2j+k

F j K

—_— — : i

ABx AC=|1 ~2|= 2+ 4)i—(1—4)j+ (2 +4)k = 6i+3]+ 6k
32 1

The area of the parallelogram with sdjacent sides [4B| and [4C| and is given by
— —
|[ABx AC|=[6i+3] +6k|=+/36+9+36 =R1=9
Ares of tnangle = %|Ex.4_c‘:| —1|6i+3j+ﬁk|=%uquam unity

AumtvectorJ_totheplaneABC—M 16: 35 +ﬁk)=—(2g‘+j+2k)

4Bx AC| &'
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{c) Moment i’, Force
Let a force F(F() act at a point P, a3 shown in the figure, The
moment of F about O &

= Product of force & and the perpendicular distance ON in the
dimct[onot'n

= (PQ)(ON}(;) (POYOP) 5in 8 (a)
~OPXxPO=pxF

Find the moment about the point M (2, 4, ~6) of the force represented
byAB‘ whe;remordmatesofpomis.-iandﬂare(l 2, —3) and (3, —4,2) respectively.

4B =0B-04 = (3~ i+ (-4-2)j+ 2+ 3)k= 2i~6j+5k
MA=(1+2)i+ (2-4)j+(-3+ )k =3i-2j 43k
IvmmanmfAﬂahmm—z,4,—6)=;xz=_EixE
PGk

=3 =2 3
w2 6 5
= (10+18)i-(15-6)/ + (—1B+4)k
=8i—9,-14k

Magaitude of the moment -,j(ﬂ)u(—g) +(-14)* = 4341
A\ EXERCISE 14.3 4

1. Computy i.l:luﬂ'ms product axb eand &xa. Check your snswer by showing that

each g Afid ) are perpendicular to axb and bxa.
() a=2+j-k,b=i-j+k () a=i+3j+2k b=2i-j+k
(i) g=24-2j+k , b=—i+j+3k  (v) a=—H+j-2 b=2+j+k

2. Find a unit vector perpendicular to the plane containing @ and 5. Also find sine
of the angle between them:

() a=i+6j-3k b=2i+j8Bk (i) a=-i—j-k b=2-3j+4k
(i) a=i+j+k, b=i-jk (v) a=5i+j-3k b=—2i+4j+k




10.

1.
12,

13.

14.

B3

16.

<> mtaies (LI
Fmd the area of the iriangle, formed by the points P, Q and R,

@ P23,5;00,2,0;R41,2 @ A00,1);002,-1,2);R-L32)
Find the area of 3 parallelogram, whose vertices are:

@ A(1,1,1);B84,2,3); CG5,6,7);D@2,5,5)

(i) 4(4,5,6);B(1,3,2); O-2,0,1);5(1,2,5)

If the cross product of the vectors u=7i—4j+5kand v=ai—5j+3k is zero,
then find the values of ¢ and b.

Which vectors, if any, are perpendicular or parallel 6&‘

@ w=5i-j+kv=j-Skiw=—15i+3j-3k o>

UsﬂﬂledcﬁMﬁﬁnufmssproductfmmvao%LEMdanark.mthﬂt
0 wx(-w=0 (i) E{c_v&—vxu

(i) wx (Fv)=(hu)x v=Fh(uxv) (}?M@+$L*J+L*E)

Prove that: ax@+_}+bx(g+a)@@+!_}) 0.

X b=bxc=cxa

Prove that: sin(a—f) = sm\*amﬁ+msamnﬂ

Show that |ax 5[’ A{ﬁﬂ ~(a-b)’
Use the defini eross product, prove that for any vectors ¢ and v
(1 -+ ) 4] = —2uxv).

Find \Emnentabout the point A1, —3, 3) of the force represented byA.B
where the coordinates of poinis A(4, 3, —1) and B(-1, 3, 7) are given.

A force :“"=6;‘+4i‘—4¢ is applied at the point A4(1,—1 2). Find the moment of
the foree about the point B(3,—2,3).

Give & force F=2i+ j—3kacting at a point 4(1,—2,1). Find the moment of
about the point B(2,0,—2).

A force £=—21:+J'—3gis applicd at P(-1, -3, 2). Find its moment about the
point (X4, 2, 2),

If @+ b+ ¢=0 , then prove




A e <> -0
14,4 Scalar Triple Product
The scalar triple product is a key concept in vector caleulus with wide-ranging
applications covering various fields., In three-dimensicnal space, it provides a
significant role in calenlating the volume of geometric shapes such as parallelepipeds
and tetrahedrons, defined by three vectors, which we will learn later in this chapter.
Additionally, it plays ag a vifal tool for determining the coplanarity of vectors,
providing a condition to verify whether three vectors lie within the same plane.
There are two types of triple product of vectors:

(8) Secalar Triple Product: u- (v * w)

(b) Vector Triple Product: u x (¥ x w)
In this section we shall study the acalar triple product only.
Let u, v and w be three non-zero vectors
The scaler triple product of vector u, v and w is defined by

u-(vxw) or w-(wxu) or w-(uxy)
The scalar triple product u- (vxw) is written as
e (vx W= [u v w]

14.4.1 The Volume of the Parallelepiped
The triple scalar product (2 % V) - w

represents the volume of the parallelepiped e
having u, v and w as its conterminous edges.
As it is seen from the formula that: - o
W vy w=luxyl|wicos® o o
Hence, () [aXv|—areaofthe o ol

paraliclogram with two adjacent sides y and v,
(ii) |w|cos 8= height of the parallelepiped
(e x V) w=|uxv||w|oos 8 =(Area of Parallclogram) (height)

= Vohume of the parallelepiped

Similarly, be taking the base plane formed by v and w, we have

The volume of the parallelepiped = (v X w)- &
And by taking the base plang formed by w and ¥, we have
The volume of the parallelepiped = (w X ). ¥
So, wehave: (uxv) - w=(@E*xw) - u=(wxu)-»




14.4.2 The Volume of the Tetrahedron
Volume of the tetrahedron ABCD =% (area of AABC)(height
of D above the place ABC)

é (Area of parallelogram with A and AC a8 adjacent sideg) (k)
=% (Velume of the parallelepiped with g, ¥, w as edges)
negative if
Thus,vulumeofteu‘ahedmn=%(:_¢x ——[_vJ ;l@ ﬂmmm

14.4.3 Scalar Triple Product of Vectors in Terms of Components
Letu=ai+hj+ck, v=aji+h j+ckand weai+h j+ck
A "
=la, b, ¢
a by ¢
= vx w=(be,~bg)i=(a,0,-a,) j+(ah —ab)k
u.(vx ¥) = a(bG-ba)-b(a6-a0)+aeb—ab)
o B g
= wxw=a b g
o e b g
Which is caﬂﬂithe determinant formula for scalar triple product of u, v and w in

Prove that dot and cross product are interchangeable in scalar triple
product.
EFITTT, Consider ¥ =ai+bjtoky=ai+hjtok ad w=ai+thj+ck
are the arbitrary vectors.
The determinant formula for scalar triple product of vectors g, v and w is given by:
% B g
u-(vxw=a, b o
@ b g

Now, v

z




s> mamenacs (1
o b g

=-|& b ¢| Interchanging R,andR,
a b ¢

Interchanging R, andR,

[
N
o
S

=w-@xy=uxy-w (v a-b=b-a
Henoe, u- (vx w)=(uxy) w
Thus, the position of dot and cross can be interchanged in scalar triple product.
[Examplef Tty i, j and k are unit vectors in & cartesian coordinate system.
Provethat i jx k= j.kxi=k-ix.j
Giveni,iandﬁmlmitvector,
So, we can write i=i+0j+ 0k, j=0i + j+0k k=0i+ 0j+kthen determinant
form for sealar triple product of unit vectors i, 7 and & can be wrilten as:

100
i.jxk={0 1 0=1(*0)—00—1)+0{0-0)=1
00 1
010 | 00 1
j.kxi=[0 0 L=0(0-0)-10-1)+0(0-0)=land k.ix j=|l 0 0f=1
1 040 010

Therefore £ j% E= . kx =k .ix j

Find the volume of the parallelepiped determined by
u=i+2j-k v=i-2j+3k w=i-7j-4k

1 2 -1
Solution Volume of the parallelepiped = #.vx w=|1 -2 3
1 -7 4
=  Volume = 1{(8+21)-23(-4-3)-1(-7+2)=29+ 14 +5

= 48 cubic units
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Find the volume of the tetrahedron whose vertices are A(2, 1, 8),

B(3,2,9), C(2, 1, 4) and D(3, 3, 0).

I 42 = OB — 04 = (3-2)i+@2-1)j+(O-B)k =i+ j+k
=0;

AC=0C-0A=(2-Di+(-Dj+(@-Bk  =0i-0j-4k
AD=0D - 0A= (H3-2)i+(3-10j+(0-8)k =i+2j-8%

1 —_— e —p
Volume of the tetrahedron = E[AJ!':‘ AC AD]

i i
=% 00 — ='15_[1(o+s)-1(u+4)+.;(0-—ﬂ')]
1 2 -8
~Lrg—4]=2 -2 cubic unts
6 6§ 3

14,44 Coplanar Vectors and Condition for Cpplanarity of Three Vectors
Vectars are coplanar if they lie in the same plane or can be
combined in the same plane.
Consider the three coplanar vectors u,w and win a plane as
shown in & figure, '
The cross product vx w gives a vector that is perpendicular
to both the vectors vand w, As w,vand ware coplanar, so
vx wis also perpendicularto y
Thus, the dot product of u'and vxw is zero. Le.,
w- (vxw)=0" - If vectars g and b are perprdicular then g-5=0

Thus, we conclude. that if the three vectors u, v end w 8#re coplanar then their scalar
triple proguct is Zero.
Properties of Scalar Triple Produnet
1. If &, v and w are coplanar, then the volume of the parallelepiped so formed is zero

that is (u % ¥)- w =0 and hence the vectors &, v, w are coplanar & (u % v)- w=0
2. If any two vectors of scalar triple product are equal, then its value is zero ie.,

[egw]=[uyv]=[uww]=0
LET 027 Prove that four points
A(-3, 5,—4), B(-1,1, 1), C(-1, 2, 2) and IX=3, 4, —5) are coplanar,

—_— —p —
Proof: AB=OB-04 = (-1+3)i+(1-5)j+(1+4)k =2-4j+5k
AC=0C — 04 = (~14 Di-+(2-5)j + 2+ 4)k = 23/ + 6k

—_— —F —
AD=0D-04= (-3+3)i+{4-5)j+ 5+ Dk =0i— j—-k=—j—k
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— — —
Volume of the parallelepiped formed AB, AC and AD is
2 4 5
— — —
[AB AC AD] =2 -3 6|=2(3+6)+4-2-0)+5(-2-0)
0 -1 -]
=18—-8-10
=0

As the volume is zero, so the points 4, B, C and D are coplaner.

(BriT28| Find the value of @, go that @i+ j, i+ j+3k and 2+ j—2k are
coplanar. _

L Let 2 = ai+£+ﬂ.’_c , y=§'+i+3§ and y-=2§+_-i_—'-2§ be three given
vectors. Scalar triple product of given vectors is '

e 1 0
[vw] =1 1 3
21 2
= a{-2-3)-1{(-2-6)+0(1-2).
=—5a+8
The vectors will be coplanar if Sg+8=0 = a=§

14.4.5 Applications f Vectors in Real World

A plumber exerts a force of 30
pounds along the negative y-axis on a lever Torque quentifies the
- : . . votatioral affect of & fres appli j
mnnm.:ted to ammhinc The pivot peint of tl'.l'a m_umm-nhm-;m
levm:lsat__i_i.mle.ﬂ_r[gin(ﬁ,ﬂ,ﬂ),andﬂ:efarce.m fi s e GF e posion vedke
applied at thepoint (1.2 f, 0.5 f, 0 ). DeLermine ¢y sxtenie om i pivet it ® the
the torque produced by this force about the pivot — pohitwhes the force ls applisd) and the furce
pﬂiﬂt \whﬁillﬂf.

EZTITTT, The position vector » from the origin P

to the point (1.2, 0.5, 0) is given by —

r=1.2i+0.55+0k Q’

The force o sl oG e
Iigex negative

y-axis with a magnitude of 30 pounds js ~ Mbemtiealy r=rxF

F =0i-30j + 0k




Unit 11} Vectors in Space <m> Mathemsties

Torgue 1 produced by the force = rx F
Using determinant formula of cross product

i j ok

=12 05 o

0 30 0

= 0i—0j—36k
£ = —36k pound-feet

Thus, the torque is 36 feet-pounds in the negative z-direction

During & building construction, a crane exerts a force to pull a concrete
block, represented by the vector F = [4500, 3300, 2140] Newton. Each component
corresponds to the force exerted along the x, y, and z axes, respectively. What is the
magnitude of this force?

Using the formula for the magnitude of a véctor in three-dimensional space

[F| ="+ 3+ 2
= /45007 + 33007 +2140°
= 20250000+ 10890000+ 4579600

=+/35719600.
= 597659
The magnitude of the for¢e exerted by the crane i approximately 5976.59 Newton,
The components of u=300i + 250 +180k represent the respective
number  of jackets, shoes, and handbagssold at a store. The components of
v=3500i +4200; + 6840k represent the respective prices (in rupees) per unit for
each product. Find ». v and explain what the resulf tells us in real life.
EXTITEETA, The dot product of 1 and y =u-v
=(3001 + 250/ +180k): (3500i + 4200 + 6840k)
= 1,050,000 + 1,050,000 + 1,231,200
=3,331,200
The result x- v= 3,331,200 tellz us that total revenue generated from selling all the
thres product is Rs. 3,331,200.
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Find the volume of parallelepiped for which the given vectors are three edges

() w=i-4j-k v=i-j-2k; w=2-3j+k
(i) u=i-2j+3k; v=2—j-k;

Prove that the veotors i— 2j+3k ~2i+3j—4k and i-3/+3K
Fmd&ecmsﬁﬂasuchlhgllhe vectors are coplanar. _jg{;)
(@ i-j+k, i—-2j-3kand 3i—aj+5k &QI
(i) I-2aj-k, i-2j+2kand ai-2j+k .
Prove that the points whose po%@% ectors  are A(—6i+3j+2k),
B(3i—2j+4k), C(5i+7j+3k), D(-13i%
(a) Find the value of :

® 2x2j-k (i) aﬁxi @) [&ij7] G [iik]
() Prove that u- (v w) +¥. (= \ IR
?)md E:him;):)f (3, zq}?\“?fl ﬁ)ﬁs 5,6)
a) @, 1,8), g}\y), (2,1,4) and (3,3, 10)
Prove that the whose position vectors are A(3i+2j—k), B(i—-2j+k),
C(6i+4j @ D(9i+6j—3k) are coplanar.
Prmet&fﬁ:rnnythmcnon—z&mvmtmu v and w
{+¥) e+ wx (w+u)] = 2[u v w]
Comsider a parallelepiped determined by the vector ¥ = 2+ 47 -3k,
¥v=5—3;+6k and w=4i-7j—2k. If the base of the paralielepiped is

define by the vectors u and y then find the height of the parallelepiped.

A mechanic applies a force of 50 pounds along the positive x-axis on 8 wrench
connested to 4 bolt. The pivot point of the wrench is at the origin (0, 0, 0), and
the force is applied st the point (0 fi, 2 ft, 3 f). Determine the torque produced
by this force ebout the pivot point

k) are coplanar.




12,

13.

15.

! . <o> smensces (L
Adruneﬂmsﬁ'ompomt (1, 2, 5) to point (4, 6, 9), with each unit representing a
meter, What 18 the magnitude of the displacement the drone experienced during
this flight?

The veotor u=350{+757+65k shows how meny belis, pants, end shirts were
sold al & store. The vector w=1500i +3500 7 + 3000k shows the price (in rupees)
of each item, Find u- w and explain what the result tells us in real life,

A force F= (20,10, 30)N is applied at a point P(2, —1, 4) in 3D space. The
pivot point is at M(1, 2, —3). Calculate the torque produced by fhis' force sbout
the pivot point M.

An eleciric shop sells three types of appliances: Fans, H@ and Ovens. The
monthly sales quantities are 500 units of Fans, 300 BE@ Heaters and 200 units
of Ovens. The profit per unit for each applian 8 500 for Fans, Rs 400 for
Heaters, and Rs 2,000 for Ovens. og«?*

(@) Represent the monthly sales qumuﬁ% the profit per unit a8 vectors.
(b) Calculate the total monthly pro wcturnpuaunns
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(i) +— (1)ﬁ“7: 5. 0.8y 5 @) 2l i) VI (i) Vi34

25 13 13
(iv) 1094’1_ 8. 2

V EXERCISE12 J
() x=-19,p=22 (i) x=9y=6 (i)x=—1l,y=28 2. ‘z=14,y=9
@ =35, y=2v5 cwx=-35, y=-25 @ X=6Ji,l p=22 or £=—6:2, y=—22

(i) s =046,y=095 or x=-046,y=-095 . 4, p:_=—§ 5 x=8,y=3 a=2,b=1

M I-4dor3+4i (i) 3-for3+1 ()23 =3Bior-243 +351 (iv) 12+ Sior 125

s(s-248) o, x_=%,y %m %f‘,y_s—z; 1. ¥u=—8 v=13 12 a=§

V' EXERCISE13 J

@) (a+i2b)(a—i2l) (i) (3a+ib)(3a —45) (i) 3(x+i)(x —) (VI9(4x+iSy)(4x —iSy)
) (z-a—) () (2+3-2)(z+3+2) (D) (z+2—){z+ 2¢4)

_ 11-3i Y 11434

ki) z(z z.}[’ 2 J

@ (z+2)eoieiB)z-1-15) @@ [z+3)[ —Lﬂl
(i) (z-2)(z—4){z+4) () (z-2)(z+2)(z-5)(z+5)

W (z—2)(z+2)(z—2)(z+28) ()  (z+1)z-1){z+2){z—2i)
(?ﬁ}(Z—JEi)(z+JEi)(z—-J3_i)(x+J§i) (i) (= 9)z + 9)z— TiNz+ Ti)

Rootz: 3,-3,4i, 4§ Linear factor: (z+3)(z—3)(z+ 4i)(z-4) 4 © ,JWZ_S

(i) =3+ &21 (i) z~3t?l () z=—2+3i () z=—%:t%i (vi) z _s;th_g:

) 2,-2,2,-2 () 0,3,-3,3-3 @D 0,1,-L4+ (v 50

&) ﬁ.—ﬁ,’ﬂ —@ P R

2

7)

3
2 2
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6, x=-22+622-Bz424 7. x=10+3022—40 B x= —32* +6z' +422* —062+96

¥V EXERCISE 1.4 4

19 220207 i) {-2,-2m,-207} i) {-3,-3a, 36"} V) {(4,4m, 40"}
V) {5, -Se,—S5a%) 2 O 2,-2,2,-2i (i) 3,-3,3 ¥
Giy 5,-5,58 -5 4 @ -1 G 32 7 0
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(vi) . (vii) x (viii)
i \.\_,- =3 _!__ .‘I
I A ; &
e \ o 2
A - 2K ‘ N B 5 A
\ ?‘-*{?"’ ?] ol A y | [—;»ﬁa 7
ol =1 j;’ g s ""’“';f g ;"I"/ )
?x\'h X Gy ! | J o ﬂ:’\, '\.l-l,x' - 'ff;.'\ 1 |.-'. I'fa- _\'l,'l R e ‘{-— A
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Ao S s Y
/ \?f ‘\r h":ﬂ.'__ oA f.f:'/:'-_f \ s S AN " /l \ A
e —= L e !,f“"*'-'rd = Yo i ¥
K oK N
e L 4 e i S
o i el N, 3
3 [_1' /%]Q
i -

3=
2
% 0) 5(cos36.87 +isin3687) i) Ji[m%ﬂsh%l iif) 1-[m§+f-in%]
iv) s[m%"ﬁgin%] ) 1.[m[_§]+;¢(_%)]

i) 1.(m.(-%]+fsm[—’%]] (viD 1-[99:[@#1%} .-.in(mq 3 D

. @ 2-28 @ —%—%r () 676-L8U (v) —10.62 285
(") —086+32l (vi) 1.68-1.09 4. () —386-2.0% (ii) —8.86-10.69%

(i) 4s(m%+um%] (i) g[ %H 11‘2"]

5 () —3.86+1.035 (i) 17.38—4.651 (i) -66.68+3851  (iv) —%m
7. cosl20 +7sin120°), —1+4/3 8 10(cos150 +isinl50),, —5/3 +5i
9, |z|=25.ﬂg(z}=%+2m 10, y=-Br2341 13 y=—=x 14, y——;x—%
18, y=—x+% 1.1 18 un( ——:ain"—_]
19.  Rectangular form: 2 + 14, Polar From: 10v2{c0s81.87 +15in81.87 )
¥V EXERCISE2.1 4
1. @ (@ 8 @)-1 i) *—4x+3 iv) x*+6x*+8

mmV-3 a3 i) v2r—1 @) V2549




— <wi> usnemstes (1
. @ 4 @ %ms[a+g}m[g] ik +3ah+ h+32 *+ 20
@) sinh 3 (a) 1!l=E m C=2%jgd © S=6r>
heosacos{a+ h) 16
4. (© Domaing =(—0,%),Range g=(—x0,)
() Domain g =[-2,o0),Range g=[0,)
(iii) Domain g = (—o0,o0), Range g = (—0,10)
(%) Dmg = (_m#m) lRﬂnEB E= [ﬂ,m)
(v) Domaing=R—{3},Rangeg=R—{-1}
5. a=2,b=22
6 @ (8 30m @ 175m © 11m (i) x=2sec
7. @ Domain ff=(—=,cc),Range f=(—o0,0)
() Yes, the function is one-to-one, because equal aufpats implics equal inputs.
(1) Yes, the fanetion ia anto when the codomuin ie all réal mumbers,
8. () Domain f=R-{-1},Range f = R~{2}

(ii} f(x)is not onto.
10, p(x) is sujective,
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(0 Minimum value et x=—3454 (i) Minimom valoe st x=—2is—4

(i} Maximuom vaioe at x = 4 is 29 {i\r)Mnimumvaluent1=_?3 ig_Tu

(v) Minimnm valne at x= — 1 is— 16 (vi) Maximmnvalunat.t=i is %

(i) Minimvm valne a1 x =2 8 — 4; Domain f= (~o, w); Renge f= [ 4, @}
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25 E]
4

{vi) Maximum valus 8t x = _Tl is T;Dmuin_f- {00, m); Renge f=(—mx,

@ £ ()= vx+3 ; Domainf=[-3, «); Range f = (~wo,0]
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(i) Quotient = x* + 3% — 2x+ 1, Remainder = 18 (iv) Quotient=5r—3x— 18,
Remainder = 122+ 71 {(v) Quotient =322+ 4x—3, Remaindar=-25x+9 2. () 20
(i) 10 i) 5 (iv) 91 (v) 10 3. (i) x+1lisafactorofa®~1

(i) x—2isafactorof - Sx+6 (i) x+lisnotafectorofs’®+x"+x-3

(ivy x-—2isafactorofz+22—7r+2 (v} x-3isnotafacterofa’—3L+x2—x+1
M -2Ux— 1} x+3) () G+ax—6Mx+2) (D) - Dx+3Nx+1}{2x+3)
Quotient =x* - 352 —x+ |, Remainder =1 6, p=2,¢=-1 7, k=1 & k=8

e

% p _—s.q — 10. a=-8,b=-16

2 2
V' EXERCISEY.2 J

1. 2625% 2 20wmits,2unitk 3. z=2,—1 4 z=-2,—1 5 z=—05,1
& z=—0.5,0.8, the sygtem is stable. 7. z=—0.5,—0.7, the system is gtable.

¥V EXERCISE 10.1 J

L ® —% @1 @2 w2z W % (i) '?'2 (i) —cos 12° (i) —sin 12°

(i) cos27° (iv)tan33° (v) sin 15° (vi) —gin 30° (vii) —cot33° (vii) —8in21°(ix) — sin 30°

¥ _EXERCISE102 J

Lo ‘%‘ i) "'E,j—; G 2-3 (9 ‘% W) ‘—;‘rzﬁ (vi) 23
13 84 13 7 36 7
o g @ g @) B o @ - 6o

The texrminal ane of angles of measure and e+ F and o — f are in 1T and II quadrania
respectively,
. 38 56 .- 504 297 . ; LA

18, (i) 6565 {ﬁ)_iﬁ’ﬁ 15 ) 255m(ﬂ+.§},mnﬂ—£ (i) 13 sin (#—g),

m¢=% (i) V2 sin(f—¢), tng =1 @) 1u;in{e—¢_},mn¢=%
() 1en(@+9)tmp =3 () -ssm(a-¢),mn¢=%

¥ EXERCISE 103 J

24 7 2% 24 7 %4
L (@yein2ag=— ,c082c =— ,tan2a=— (i) sin 2= —,co8 2= —, tan 2a= —
25 25 7 25 25 7
3—4cos 20 +cos 48 -1 Jio+245
4, gn'g= 22 8"“’” 5 () ain18°=‘ET. doi 185 = :J‘
J10-245 J10-2v5
(i) sin36° = J_,m35==£+1 (Y ain =‘E+l,ms4°=—‘r

4 4 4 4




I <> mamemaces (1
Jioi245 J5-1
4

(iv) gin 72% = .ms‘ﬂ“’-T

¥ EXERCISE 104 J

1. () sind4@+sin2¢  (i)sin BP—gin26 (i) %(sin’?ﬂ+uin36) (iv) cos58—cos9¢

() 3 (oin 2x — sin 25) (v) 3 (os i+ cow 607) (v (o08 34°—co8 S8 (viiD  (o0s 90°— con 24

2 @) 2sin4fco1d (i) Zoos60sin20 (i) Zeosdy cosp (¥) ~Zsin4sin3Q

(v) 2co830°con 18° (vi) 2 minx con 30°

F EXERCISE 1.1 J -

L. () even (i) neitherovennorodd (i) even (iv)meitherovennorodd  (¥) odd
o otd (i) even (i) even 2. @ 2 ) Z @)L G20 () 40 (D) 5w

o) T wii) 2 () 30 () o) 30w

V _EXERCISE11.2 4




(iv)

e e s . o

v
x
> 1].!:2__

oD

IS ————

(¥)

e e T,

s
L]
L]
L
]
i
L]
L}
L}

D

R S, =4

y=ooa i:

y=sin 5z



¥ EXERCISE 11.3 J

1. (i) Max=4,Min=2 (i) Max=4, Min=2 (iii)Max=%,Min=? () Max =, Min=—
=9 1
(v) Max=4, Min=-2 (vi) Max =3, Min=—1 (vii) m-%,hﬁn-% {gﬁi}'Mu-%, Min=

(=) Mu-%.hﬁn- % 2. (a}Mu.hmpm=21.5°C,hﬂﬁ;mmpmm:u=B.5°C

{b) Temperature at 9 a.m,=B,89°C 3. distance=36.78m 4. height=130.92m
5 @ a(:)=-3um(%r]+3ﬁ (b) 66 fest (c) 6372feet 6. (1) 27m () 0.3m

© %mond (d) 0.05second 7. (6) ﬁm:ﬂs-z&m[%r) (b) 28 feet
(c) 3787sandB213s B (3) 6607F (b) 4br or2pm (g) MF
5. (a) 65000 (b) BOOOD
F EXERCISE 12.1 J

1@ 2 (D0 (il divergent (i\r}% L@ 10 G)S (Y4 Mo @0

(i) % i) 2 (ﬁ)% (i) —12(v) 0 () 0 (vi)—4 (vii) 2

b -2

I-.
(i) S ) TtTA DS @ gn @O M) VG

2

vy 2 (vi)2 (vii) (ix) %{x} 6-log3 (xi)  2log2
O & @ Ve tiin% ) & ) €& o) & Gy (i)
{h}% ®-1x) 1 @)
V EXERCISE 12.2 4

1. () =2 (i) ¢ (id) o 2. (D) fis contimuous at x = 2 (ii) f'is discontinuous at x = 1




= o> mnemscs G
3. (i) fiscontinuons atx=2 (ii) fis discontinnous atx=-2 4. c=-1

5 (D m=1Ln=3 (i) m=4 G k=% 7. f{x)is discontinuous atx=1.

V' EXERCISE 123 4

1. 0 2 100000 3. 500 4 (D10 GO 5 () o (i) 8244
6 yes 7. () 1618% (i) 1399 8 yes

¥V EXERCISE 13.1 J

1. @4 (ﬁ)% {iii}—%fm(iv)h—B 2 (i)qbi('ﬁ}—”—;ap 3, (i_}%’ (i) 26+ 2

" @(3;'_“2}, () 10G+3) i) TeawrbF 5. 8y=g+13 & y=TrH

7. {L,0,y=x-1 & 8 9% % Jep=x+9 10, (i) 28km/k’ (i) 13 kmih
11. 0 12. 8°c/kr 13, ()not differentisble (i) not differentiable

P EXERCISE13.2 J

1. (D4l +62+2% (iij-3(%+x+a) (ﬁila% (iv}%x ) 1 =242+ 522
i 2 _ ]
os-2 oGS wgly wghm

) —a () —2x 3 W-250 -3 t2 £-3¢+3x-1
‘\iﬂ—x-(a+x)m ' '\!__F-Fl(x’—l}"“ T oAk aE-1pP T afx (-anp

¥ EXERCISE 13.3 J
v=15f—&f+1 - 2. Maximum Stress= 100, Rate of change= 0
O PE) =—10F+700x-2000 (i) Rs.400 4, (2940 (i) 27440
@) 152mfs’ ﬁl] D6mi 6. () T2ewh (i) —12kw/ 7. 292Pa/m N 191686.6 unite/m

V' EXERCISE 14.1 J
3

C@1-9 ®UU-REGVIE 1 @ B3 @6 3
£

R 1.4, g, 174-12j-16
(m}lﬂ. s’s'u 3. I= 2 d, g_.i"'gj—g_k & \’r:g

g e

um.:

[
l.nll—

o
Ly
1=
L
|
'--I

T AT R T e AT ;
6. (i)'\!_ﬁ_ﬁﬁj_ 26! (i) '\E'H-‘\E'! 31' T.x=-3,y=-5 9. () 3i-
_ si 107 1sk

J 15k pe g—
N T @ a=—3,3

B kg




-~ <> ramenncs ({0
10, 1B dlometers 11 @ -5.2.2 @ %.%,—3&? (iif) %.
1Z. Omly the triple (iif) 45°, 60°, 60° eatisfies the condition for direction angles of 2 single vector.

F EXERCISE 142 4

% 8=60 3. =%

=
=1 | &

@® % ) —r';ﬂ

4. (@ Projeciionofaalong b: —;g :Hnjmﬁmnfénhlsg:—%f_:
(i) Projection of a slong b: %g; Brojection of b along gg 5 M3 @ Lo
198

6 20r-3 I3 S6umity 04, D2 onita 15, 102 umity 16, Eguﬂm

¥V EXERCISE 143 J

L @ axb=-3f-3k;bxg=3/+3k () gxb=5i+3/-Tk;bxag=-5i-3]+7k
(i) axb=-T1-7] ;b*xa=7147] (¥) axb=31-6k;bxa=-31+6k

Ni-9j-Nk  Jg@m | IIH2it5k 7 ik PN

2 @ T;mﬂ-@ (i) T;ﬁne-m (i ﬁ:ﬁnﬂ-g
137+ J+22k 654 o 126

. s 3 - .. 52 .
{i\r}—\’a rainf@= T 7 sgquare units (i) 2 aquare units

4 O VBisuwrmis @ VOmuemis 5 a=a b=t

6. (i) Parallel vectors: g and w ; Perpendicular vectors: No
(ii) Parallel vectors: u and w ; Perpendicular vectors: ¢ and v ; vand w
13, 48i-41+30k 14, —14j- 14k

15, 34+3j+3F 16. 154—15j—15%

V' EXERCISE 144 J

1. ()25 cublounits (if) 14 cubjounits (iii) 10 cubicunits 4. (i) % (i) +1

& @ @4 @3 G WO T @ 3wbicunits ()3 cubicunits

301 ;
18, Ji6% 11. 150 - 10D k(in pound feet) 12. /41 meters

13. Rs.SEZSﬂQwhidﬂsﬂmtutalmmuafmmthua]sufaﬂitems.
14, -20i+110j+50kNm 15 (a) [500,300, 2007, [500,400,2000] (b) Rs. 770000




